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INTRODUCTION

Due to the serious interest in radiated electromagnetic effects which exists within
the Department of Defense and the electromagnetic compatibility (EMC) community the
subject of electromagnetic shielding has risen to a position of high importance. Military
systems and support equipment are generally required to operate either during or after
exposure to a variety of intense electromagnetic environments, such as electromagnetic
pulse (EMP), electromagnetic interference (EMI), jammers, and directed energy
weapons, that is, high power microwaves (HPM). The problem of shielding by circular
conducting cylinders is especially important for the analysis of military systems due to
the congruity, or similarity of this shape to the shapes of airplanes, missiles, and artillery
projectiles. Rough engineering estimates of the shielding inherent in these types of
military systems may be made by approximating these structures by ideal cylindrical
conducting shells.

The propagation of an electromagnetic planewave in the presence of a planar
conducting sheet, an infinitely long cylindrical conducting surface, and a spherical
conducting surface are among the few problems which admit an exact analytical solu-
tion and have therefore been investigated in some detail. These solutions have been
used to make calculations of the electromagnetic attenuation, or shielding effectiveness,
of these structures. More complicated structures have also been investigated by vari-
ous methods. The shielding effectiveness is the primary quantity of interest in the
subject of electromagnetic shielding. It is a quantitative measure of the attenuation of
incident electromagnetic energy due to the presence of a metallic surface or shield. It
may be roughly defined as the intensity of the electromagnetic field at a point in space
within the shielded volume to the intensity of the incident planewave.

The purpose of this report is to calculate the shielding effectiveness versus fre-
quency for circular cylindrical shields and for spherical shields. An important result of
this paper is the derivation of an approximate formula which expresses the shielding
effectiveness as a function of the frequency, the conductivity, and the thickness of the
shield. The results show that this formula is a good approximation for frequencies in the
resonance regime. This approximate formula permits quick shielding calculations to be
made without the need for computer programs or complicated mathematics.

Due to its geometrical and mathematical simplicity, the problem of scattering of a
planewave by a solid circular cylinder at perpendicular incidence was solved as early as
1881 by Lord Rayleigh, (ref 1), and independently by von Ignatowski in 1905 (ref 2).
Following these original works many German authors investigated this problem, includ-
ing von Ignatowski in 1907, (ref 3), Seitz in 1905 and 1906, (refs 4-6), von Schaefer in
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1907 (refs 7,8) and Debye in 1908 (ref 9). The scattering of a normally incident
planewave by a solid cylinder with a concentric cylindrical sheath was first solved by
Adey in 1956 (ref 10), Tang in 1957 (ref 11) and latter investigated by Kerker and
Matijevic in 1961 (ref 12). The problem of scattering by a solid cylinder due to a
planewave at oblique incidence was not solved for many years following the initial work
of Lord Rayleigh and von Ignatowski. The full solution of this problem was given by
Wait in 1955 (ref 13) although the method and form of the solution was given in the
classic textbook on electromagnetic theory by Stratton in 1941 (ref 14). Exact solutions
for scattering by cylinders due to other types of sources, such as line sources and
dipole sources, may be found in the encyclopedic reference book on electromagnetic
scattering by Bowman, Senior, and Uslenghi (ref 15).

The first analysis of the shielding properties of hollow conducting cylinders was
made by Wu and Tsai in 1974 (ref 16). These authors solved the scattering problem for
a cylindrical conducting shell of inner radius r=a and outer radius r=b due to a normally
incident planewave, and then calculated the shielding effectiveness as a function of ka
for a cylinder of radius a=3.0 mm and thickness b-a=0.1 mm. The calculation covered
the frequency range from ka=1 .1 to ka=4.0, and, therefore, was limited to a narrow band
in the vicinity of the first resonant frequency. In a second paper, Wu and Tsai analyzed
the shielding effectiveness for a planewave at oblique incidence (ref 17), and in a third
paper they investigated the transient response of a cylindrical shield to simple EMP
wave form (ref 18). These are the only results on the shielding problem for circular
conducting cylinders which are known to this author. In this report some of this earlier
work shall be extended. The shielding effectiveness shall be calculated over a wide
range of frequencies which covers several orders of magnitude. In reference 16 no
details of the numerical calculations were given other than a reference to a well known
handbook of functions (ref 19). In this report, full details of the numerical calculations
shall be included for completeness. This analysis leads to a derivation of the resonance
condition and a derivation of an approximate formula for the shielding effectiveness in
the resonance regime. No results for the shielding effectiveness are presented for the
case of an obliquely incident planewave due to time constraints on this work.

In the second part of this study the shielding properties of a spherical shield are
investigated. This problem is closely related to the problem for the cylinder and the
results are very similar. The complete theory for scattering of an electromagnetic
planewave by a sphere is usually attributed to Mie (ref 20). However, as pointed out by
Kerker (ref 21) the theory had been worked out earlier by several authors, and even as
early as 1863 by Clebsch. Some of the earlier work included the theory of scattering by
a perfectly conducting sphere by Lorenz in 1890, the theory of scattering by a perfectly
conducting sphere by J.J. Thomson in 1893, and an extension of Thomson's theory to
dielectric and imperfectly conducting spheres by Love in 1899. Following the work of
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Mie in 1908, further contributions to the theory were made by Debye in 1909 (ref 22).
The most concise formulations of the solutions to the scattering problem for the sphere
are in terms of spherical vector wavefunctions which comprise a complete set of solu-
tions to the vector wave equation in spherical coordinates. Details of these solutions
are given in the text by Stratton (ref 14). The problem of scattering by a spherical shell
was first derived by Aden and Kerker in 1951 (ref 23). These authors consider a spheri-
cal scatterer consisting of two concentric homogeneous regions which are in direct
contact: a spherical interior region covered with a concentric spherical shell. The
general solutions are given for the case when the interior region and the concentric
spherical shell have different complex dielectric constants and different complex
propagation constants. The study by Aden and Kerker was extended by Wait in 1964 to
the case when the scatterer consists of any number of concentric homogeneous re-
gions (ref 24).

Stimulated by interest in nuclear electro-magnetic pulse (EMP), studies of the
shielding of transient fields by a spherical metalic shield were conducted in 1965 by
Harrision and Papas (ref 25). Using the steady state solutions for scattering by an
incident planewave of frequency f (ref 14), the authors calculate the field amplitudes of
the incident wave, that is, the shielding effectiveness, as a function of frequency. This
result is just the transfer function for the field amplitudes, either electric or magnetic, at
the center of the sphere due to an incident wave of frequency f. Using this transfer
function and standard Fourier transform techniques, these authors make numerical
calculations of the transient fields at the center of the sphere due to a Gaussian EMP
wave form incident on the sphere. Further investigations of the steady state shielding
problem were made by Chui, Dudley, and Bristol in 1969 (ref 26). These authors use
the vector multipole expansions of the fields described in Jackson (ref 27) instead of
Stratton's vector spherical wavefunctions. Mathematically, however, these two formula-
tions are equivalent. The only other difference in their approach is that they consider a
circularly polarized incident wave rather than a linearly polarized wave, which adds
some symmetry to the problem. This work extends the results of Harrison and Papas
by calculating the magnitudes of the electric and magnetic fields in the interior of the
spherical shell along the z-axis, and not just at the center z=O. These calculations were
performed at six frequencies, including the first two resonant frequencies. In addition,
they present plots of the equi-field curves throughout the interior region for two different
frequencies. The results of this work, and additional work by Dudley and Quintenz in
1975 (ref 28) show that the magnitudes of the fields away from the center of the sphere
may be four orders of magnitude greater than the fields at the center.

The theory of the shielding effectiveness of a spherical conducting shell is devel-
oped in this report with reference to the fields at the center of the sphere. The approach
used here is the same as that of Harrison and Papas (ref 25). Numerical calculations
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are performed for a sphere with outer diameter d=1 55 mm and thickness b-a=0.1 mm,
over a range of frequencies from 100 to 1010 Hz. The results show a series of discrete
resonances at high-frequencies. Although these resonances are analogous to those for
the cylinder problem, the have apparently not been thoroughly investigated in previous
work. Equations for the resonance conditions are derived. In addition, an approximate
formula for the shielding effectiveness is obtained which is accurate for frequencies in
the resonance regime. To this authors knowledge this result has not been derived
previously.

The contents of this report are organized as follows. The theory and results for the
cylinder are presented in part 1, and the theory and results for the sphere are presented
in part 2. In the first section, section 1, the field equations will be solved by reducing the
Maxwell equations to a scalar wave equation, the scalar Helmholtz equation, in cylindri-
cal coordinates. In section 2 and section 3 the exact solutions for the TM and TE fields
shall be presented in the forms of series expansions of the fields and the expansion
coefficients determined by the application of boundary conditions on the cylindrical
surface. In sections 4, 5, and 6 the field equations shall be solved for the case of an
obliquely incident planewave, that is, a planewave incident at an arbitrary angle to the
z-axis. Then in section 7 the shielding effectiveness shall be defined and the results of
numerical calculations of the shielding effectiveness versus frequency for the cylinder
shall be presented for both the E-polarized and H-polarized incident waves. The nu-
merical methods for evaluation the Bessel functions are described in Appendix A. The
results are compared to the approximate formula for the shielding effectiveness which is
derived in appendixes B, C, and D. An alternate definition of shielding effectiveness is
defined in appendix E. In part 2, the Maxwell equations are solved by using the well
known spherical vector wavefunctions which form a complete set of solutions to the
vector wave equation, the vector Helmholtz equation, in spherical coordinates. In
section 8 the scattering of a planewave by a spherical conducting shell is solved by
expanding the electromagnetic fields in terms of spherical vector wavefunctions. The
expansion coefficients are obtained by matching the boundary conditions at the spheri-
cal surface. In section 9 the field solutions are used to obtain expressions for the
shielding effectiveness of the sphere, and in section 10 the numerical calculations of the
shielding effectiveness are presented. The resonance conditions and the approximate
formula for the shielding effectiveness are derived in appendix F. Finally, the conclu-
sions are summarized in section 11.

THEORY: PERPENDICULAR INCIDENCE

An infinitely long cylindrical conducting shell of inner radius r=a and outer radius
r=b has electrical conductivity a, dielectric constant E, and magnetic permeability A. It
is assumed that the conductor is a non-magnetic material, that is, it is a diamagnetic or
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paramagnetic material, such as copper or aluminum, and therefore A=Po. The case
when the conductor is a ferromagnetic material is more complex due to the frequency
and magnetic field dependence of the permeability, and therefore shall not be consid-
ered here. Consequently, this analysis does not rigorously apply to shielding materials
such as iron or steel. It shall be assumed in the analysis that 4=1o.

The cylinder is located in empty space (vacuum) which has a dielectric constant Eo

and permeability g,. A linearly polarized planewave of frequency f is incident on the
cylinder with its direction of propagation perpendicular to the cylinder axis. Two
polarization states shall be analyzed separately: one state of linear polarization of the
incident wave with the E-vector parallel to the cylinder axis (TM), and one polarization
state with the H-vector parallel to the cylinder axis (TE). Any state of elliptical polariza-
tion of the incident planewave may be expressed, in general, as a sum of these two
polarization states, TM and TE, with complex coefficients. Therefore, once solutions for
the TM and TE incident waves are found, the general solution for an arbitrary state of
polarization of the incident wave may be obtained by superposition of these independ-
ent solutions.
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Figure 1. Geometry for perpendicular incidence. Top view.

The physical geometry for this problem is shown in figure I.
There are three distinct regions: I, II, and III, for which the
electromagnetic fields must be determined. The boundary
conditions on the field vectors at the interfaces of the
different regions are as follows: the tangential E-fields and
tangential H-fields must be continuous, and, the normal D-fields
and normal B-fields must be continuous. The electromagnetic
field equations, the Maxwell equations, in MKSA units for a
general conducting medium are as follows:

VxE - - dB

dD
VxH = J + d ,

V.D = 0,

V.B = 0,

where the material equations are

D =E,

B =H,

J = OE.

Since the incident planewave has a harmonic time dependence, this
implies that all the fields shall have the same time dependence.
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Therefore it is assumed that the field vectors E, H, D, and B

vary in time as e- Using this fact together with the
constitutive equations, the Maxwell equations take the form

VxE = iCphH, (1)

VxH = (o-iw)E, (2)

V'E = 0, (3)

V.H = 0. (4)

The wave equations for the E and H-fields may be derived from
the field equations. Taking the curl of equation 1 and using the
vecto-r identity

Vx(VxE) = V(V.E) - VIE

and then substituting equations 2 and 3 into the result yields
the vector wave equation, or Helmholtz equation,

(V 2 +y 2 )E = 0, (5)

where
y 2 icp0 (o-iWC).

Similarly, by taking the curl of equation 2, and then
substituting equations 1 and 4, the wave equation for the H-field
takes the same form:

(V2+y 2 )H = 0, (6)

where
Y2 = io(O-iwE). (7)

In the case when the conductivity is zero, that is, in regions I
and III, the same wave equation holds with o=0, and c=Lo, which
implies y=k. As a mathematical note it should be mentioned that
the wave equations, equations 5 and 6, are automatically
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satisfied by the E and H-fields if the fields satisfy Maxwell's
equations. That is, If E and H satisfy Maxwell's equations then
they satisfy 5 and 6. However, if the fields satisfy 5 and 6 this
does not imply that they satisfy the Maxwell equations.
Therefore, once solutions of the wave equations are obtained it
is necessary to verify that they satisfy the Maxwell equations.

In the first case to be considered the incident E-field is
polarized in the z-direction:

E inc EoeikX.

Symmetry about the z-axis implies that the total E-field in each
of the three regions is also polarized in the z-direction. Thus
the only nonzero component of the E-field is Ez in the TM case.

By using the first Maxwell equation, equation 1, and the
expression for the curl operator in cylindrical coordinates, the
total H-field has two nonzero components given by

1 1 dEz

r i3110 r T' (

H -1 dEz

Thus, when the electric field component Ez is known the magnetic
fields may be obtained by differentiation. The electric field Ez
will be obtained in each of the three regions I, II, and III by
solving the respective wave equations. The magnetic fields will
be calculated from Ez by using equations 8 and-9. By using this
approach Maxwell's equations are automatically satisfied.
Similarly, in the TE case the only nonzero component of the H-
field is Hz. Using the second Maxwell equation, equation 2, the
components of the E-field in this case are given by

1 1 dHz
Er o-iNrE i ' (0)

-1 dHz
8 T-



The material parameters in region I are v., e., and 0-0. The
wave equation for Ez (TM case) or Hz (TE case) is given by

(V-+k2)- 0, k2 _c2;

where V is equal to Ez or H2 . Using the expression for the

Laplacian in cylindrical coordinates this becomes

1dr d + ' + k2* - 0 . (12)

To solve this equation use separation of variables. Let
V-R(r)Q(4'). Then the equation for the angle variable becomes

d2Q = 0, (13)

which has solution

Q(4) e±in4 "

The parameter n2 is the separation constant. To ensure that the
solution is single valued n must be an integer: n= 0,±l,±2 ....
The radial equation takes the form

d2R + 1 dR + (k2 + n)R 0. (14)

If the substitution x=kr is made, then this equation takes the
standard form of Bessel's differential equation:

d2 R +1 dR + (I n2 )T +(-- 0. (15)

The linearly independent solutions are the Bessel functions of
the first and second kinds

R(x) = Jn(X), Yn(X).
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Another set of linearly inr-pendent solutions are the Hankel

functions

HA(x) - Jn(x) + iYn(x),

H2 (x) - Jn(x) - iY (x).
n n n

The total field in region I may be written as a superposition of
the incident and scattered fields in the form

eikx + in anHA(kr) ein (16)

n--

The Hankel function H'(kr) is chosen since it represents an
outgoing wave for large r. The incident field may be expanded in
a Fourier series as follows

eikx = eikrcos(4) in Jn(kr) ein4 .  (7)

nm-le

Therefore, using this expansion the total field may be written

= 2 in[Jn(kr) + anHA(kr)]ein , r>a . (18)
n=- 

n

Next, solutions shall be found for the wave equation in region
II. The material parameters in region II are P,, E, and o.
The wave equation for Ez in the TM case, or Hz in the TE case, is

(V2+y2 )* 0,
where, from 7

2 O we, (19)
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As in the previous derivation, separation of variables leads to
the solution

= in [bnJn(Yr) + CnHA(yr)]ein0 , a<r<b . (20)

The combination of functions Jn(yr) and HA(yr) are chosen so the

solution in this region has a similar form to the solution in
region I. The arguments of these functions are now complex,
however, since y is complex. For a good conductor, and for
frequencies such that (o/co0)>>1, approximate relations for y
are, from 19,

Tr
': (i-a--)' and y - e (coo e 4 . (21)

In region III the material parameters are v., E., and o=0.
Thus the wave equation has the same form as in region I:

(V=+k 2 0, k2 = c

As before, separation of variables yields the solution

= n in dnJn(kr)ein', r<a. (22)

Only the Bessel function Jn(kr) is used since the other

solutions, which contain Neumann functions, approach infinity as
r approaches zero. These other solutions are physically
unacceptable.

Due to the fact that only the Hankel function HA(x) shall be

used, the superscript (') shall be omitted hereafter. Therefore,
whenever the function Hn(x) appears it should be understood that

it stands for H1 (x). The reason for this is to avoid confusion
n

with the prime symbol (') which is used for differentiation. This
convention shall be adhered to throughout this thesis.
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2. TM INCIDENT WAVE

The full solutions for the fields in the TM case are obtained
by using equations 20, 21, and 22 which give solutions for Ez and

then using equations 8 and 9 to determine Hr and H . The full

electromagnetic field solutions are, in region I,

Ez f E, in[iJn(kr) + anHn(kr)]einO, r>b; (23)
nm-r

n+ir
Hr iw. ri= nin LJ~k)4a~~r]i~ ~; (4H~ - E i + [Jn (k r ) + an (k r )]e in o r>b; (24)

n=--

i in[JA(kr) + anHA(kr)]ein, r>b; (25)
n=-e n

region II:

Ez  E. in[bnJn(yr) + cnHn(yr )]eing, a<r<b; (26)
n=-

H E 1 nin+l[bnJn(yr) + cnHn(yr)]ein , a<r<b; (27)r iwp, r -nnnn

H oI in[bnJA(yr) + CnHn(yr)]ein), a<r<b; (28)

region III:

n in4'Ez  E, i d nJ n(kr)ei, r<a; (29)

Hr T-E i nin+l d J (kr)ein, r<a; (30)Hr r -u n~nlk~; (0
n-

-k- 0i 0 n ' ein4)
Hn dnJn(kr) ,r<a. (31)
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The coefficients an' bn, cn, and dn are determined by matching

boundary conditions at the interfaces. Continuity of the
tangential E-field at r-b implies

Jn (kb) + a H (kb) - b Jn (yb) + cnHn(yb). (32)

Continuity of the tangential E-field at r-a implies

bnJn(ya) + cnHn(ya) - dnJn(ka). (33)

Continuity of the tangential H-field at r-b implies

k[JA(kb) + anHA(kb)] = [bnJA(yb) + CnH(yb)].  (34)

Continuity of the tangential H-field at r-a implies

y[bnJA(Ya) + cnHA(ya)] - k dnJA(ka). (35)

These are all the required boundary conditions. Since V-V., the
boundary condition on the normal component of B is redundant.
These equations; 32, 33, 34, and 35; comprise a nonhomogeneous
system of four equations in the four unknowns an, bn, cn, and dn.
The solutions of this system are obtained directly with the use
of Kramer's rule. This results are given by the relations

U, bn UC U dn U4  (36)an vs n = , - V1 (6

where the Ui and V are determinants given as follows:
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-J n(kb) -Jn (yb) -H n(yb) 0

U, ~ J (ya) H n(ya) -J (ka) (7

-kJA (kb) -yjl(yb) -yHA(yb) 0

o yjA(ya) yHA(ya) -kJA(ka)

Hn (kb) -Jn (kb) -Hn (yb) 0

o 0 H n(ya) -in (ka)

U2 ~ kHA(kb) -kJA(kb) -yHA(yb) 0(8

0 0 yHA(ya) -kJA(ka)

H n(kb) -Jn (yb) -Jn (kb) 0

ll01n(ya) 0 -in (ka) (9

kHA(kb) -yjA(yb) -kJA(kb) 0

0yjA(ya) 0 -kjA(ka)

14



H n(kb) -Jn(yb) -Hn(yb) -Jn (kb)

0 Jn(ya) Hn(ya) 0
U 4  - (40)

kHA(kb) -YJA(yb) -yHA(yb) -kJJ(kb)

0 yJA(ya) yHA(ya) 0

and

H n(kb) -J n(yb) -Hn (yb) 0

0 Jn(ya) Hn(ya) -Jn(ka)
V - .(41)

kHA(kb) -yJA(yb) -yHA(yb) 0

0 yJA(ya) yHA(ya) -kJA(ka)

This completes the solutions for the fields in'the TM case. The
expansion coefficients may be determined explicitly by evaluating
the above determinants.

Although the series solutions of the fields are rather
cumbersome since the expansion coefficients are given by
quotients of determinants of Bessel and Hankel functions, they do
constitute exact solutions, and they are sufficient for the
purposes of this study. It is very desireable, and it seems very
reasonable to expect that the field solutions may be expressible
in a closed form in terms of an integral. This author is not
aware if such a closed form integral solution exists or has been
derived previously. This is a point of departure for further
investigations.
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3. TE INCIDENT WAVE

The full solutions for the fields in the TE case are obtained
by using equations 20, 21, and 22 which give solutions for Hz and

then using equations 10 and 11 to determine Er and E . The full

electromagnetic field solutions are, in region I:

Hz - H, in[Jn(kr) + AnHn(kr)]ein*, r>b; (42)
n=-=

Er O n+1 nin)E~ I ni [Jn (k r ) + An nkr)]ein r>b; (43)

Er Hok r i n n

o in[J(kr) + AnHA(kr)]ein4, r>b; (43)

region II:

Hz HO Z in[BnJn(yr) + CnHn(yr)]einO, a<r<b; (44)
n=--

Er H. Q I1 nin+l[BnJn(yr) + CnHn (yr)]einO, a<r<b; (45)r o-we rn=--nn

E - in[BnJA(yr) + H(yr)]e , a<r<b; (46)0 o-iWC n-- n+ Cnn

region III:

Hz - H, i Dn DnJn(kr)e ina; (47)
n=-M

Er -H. 1 nin+l DnJn(kr)einV, r<a; (48)

Er HH- iE i n  r n e n

E =n DnJn(kr)e ,"O r<a. (49)
0 iWC. fLua 1
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As in the TM case, coefficients An' Bn, Cn , and Dn are

determined by matching boundary conditions at the interfaces.
Continuity of the tangential H-field at r-b implies

J n(kb) + AnHn(kb) - BnJn(yb) + CnHn(yb). (50)

Continuity of the tangential H-field at r=a implies

BnJn (ya) + CnHn(ya) = DnJn(ka). (51)

Continuity of the tangential E-field at r=b implies

k [JA(kb) + AH (kb)] = -Y [BJ'Iyb) + CnHnlYb)]' (52)iWC0 JH (k) -iwc nAy)+CnAy). (2

Continuity of the tangential E-field at r-a implies

- [B nJ(ya) nH(ya)] = k DnJA(ka). (53)
a-i~e nJ+(a) +CH'

These are all the required boundary conditions. These equations;
50, 51, 52, and 53; comprise a nonhomogeneous system of four
equations in the four unknowns An, Bn, Cn , and Dn. As before,

the solutions are obtained with the use of Kramer's rule. The
results are as follows:

An = , B, C Dn = 4
n= , Bn Y Cn ' n Y, (54)

where the X and Y are determinants given as follows:
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-in (kb) -J (yb) -Hn (yb) 0

0 J (ya) Hn (ya) -J (ka)

n~c n n-co

0 b -Y JA(yb) - HA(yb) 0kP~a

o-{i.JAYa 0-fHm a ME-J (ka

Hn(kb) -J (kb) -Hn (yb) 0

o 0 Hn (ya) -Jn(ka)

X2 =,(56)

ko -k YHA(yb) 0

o=-H~b 0 -l ~ H~y) b-A)a

Hn(kb) -in (yb) -in (kb) 0

o Jn (ya) 0 -J (ka)

X3 =,(57)

kH(kb) Y- JA(yb) _k JA(kb) 0

0 -Y -JA(ya) 0 _k~ i(ka)
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Hn(kb) -Jn (yb) -Hn (yb) -J n(kb)

0 Jn(ya) Hn(ya) 0
X4 -(58)

k LH '(b) -k
iI n (kb )  -JA (y b )  YH(yb ) i-- ?Jn(kb)

o -Y JAya) -Y HA(ya) 0

and

H n(kb) -J n(Yb) -Hn(yb) 0

0 Jn(Ya) Hn(Ya) -J n(ka)

V = . (59)
k ,YJA(b HA(yb) 0
i-,Hn(kb) o- ) c n

I -k_
0OJA(ya) - H(ya) i- Jn(ka)

This completes the solutions for the fields in the TE case. The
expansion coefficients may be determined explicitly by evaluating
the above determinants.

This concludes the presentation of the electromagnetic field
solutions for the scattering of a normally incident planewave
from a circular cylindrical conducting shell of inner radius r=a
and outer radius r-b. The expansion coefficients of the fields in
the region r<a shall be evaluated in the Appendixes for the
purposes of calculating the shielding effectiveness. In the next
sections, sections 4, 5, and 6 the solutions for scattering by an
oblique.y incident planewave shall be derived.
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4. OBLIQUE INCIDENCE

In general, Maxwell's equations may be solved by the use of
two auxilary vectors n, and n,, called Hertz vectors. The time
harmonic Maxwell equations, equations 1, 2, 3, and 4, are
automatically satisfied if

E - VxVxl + imp VxT, (60)

H - (o-iwc)VxTl1 + VxVxla, (61)

and if the Hertz vectors satisfy the vector wave equations

VxVxfl, - V(VeT,) - y', - 0, (62)

VxVxn 2 - V(Vel2 ) - Y'na = 0, (63)

where, as before,

Y2 = iwii(o-iwc). (64)

This may be verified by inserting equations 60 and 61 into
equations 1 and 2, and then using equations 62 and 63. In the
case of cylindrical symmetry the only nonzero components of the
Hertz vectors are the z-components. If T,-e z and 17,=0, where

Tf, is a scalar function, then the cooresponding solutions of
Maxwell's equations are given by

E - VxVxT ih er + ih F d e9 + (y2- h'), ez ,  (65)

H -(a-iwc)Vx 3  (o-iwe) (1 dY e dY (66)
rFVL Sr -. J e~'-]%I,

where it is assumed that T, - *,(r,O)ei h z . A z-dependence of the

form eihz is chosen to match the form of the incident wave. The
vectors er, e, and ez are the usual unit vectors in the
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cylindrical coordinate system. An independent set of solutions of
Maxwell's equations is obtained if n,=o and IT2=ie z which yields

Eimr vxrr2 = imp (1 h) e z er e,, (67)

H - VxVxn, = ih d' e + ih 1 e + (ye 6dr r rf t4 '0 + (y-h) 2 e,(8

where 2 = ,(r,O)e ihz . Note that the solutions based on the
wavefunction T, have a nonzero Ez component, and the solutions

based on the wavefunction T. have a nonzero Hz component.

Therefore, equations 65 and 66 represent TM fields and equations
67 and 68 represent TE fields.

For the case of perpendicular incidence a TM incident wave
gives rise to a TM scattered wave and a TE incident wave gives
rise to a TE scattered wave. This is not true in the case of
oblique incidence. For oblique incidence a pure TM incident wave
gives rise to a combination of TM and TE scattered )aves. And,
similarly, a pure TE incident wave gives rise to a combination of
TE and TM scattered waves. Therefore both TM and TE components of
the scattered fields are required to express the total fields in
each of the regions I, II, and III. This implies that both
wavefunctions T, and T, must be used to give independent TM and
TE solutions for the scattered fields, respectively.

In region I, r>b, the material parameters are e., p,, and o=0.
The scalar Helmholtz equation takes the form

(V2+ k2 )T = 0, k2 (69)

The solutions for the wavefunctions are

H ihz in in4)(T)= a n~n( )  ,(0

(TE) T2 = in b H ()e in(71)
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where L2.k2- h2. The Hankel function is chosen so that the
scattered field reduces to an outgoing wave as r approaches
infinity. The constants E./kZ and H./ki are included so that the
expansion coefficients are dimensionless. For convenience, the
field strengths E, and H, will be chosen to be equal to those of
the incident planewave. In region II, a<r<b, the region within
the conductor, the material parameters are e, V., and o. The
Helmholtz equation takes the form

(V2 +y 2 ) . 0, Y,= ico(o-iw).

The solutions for the wavefunctions in region II are

(TM) E, = E eihz in[cnJn(Xr) + dnHn(Xr)]einO, (72)

(TE) Hk W H eihz i n[fnJnM) + gnHn(Xr)]e (73)

where X2 =y2- h2 . Both Bessel and Hankel functions are required in
the expansions 72 and 73 in order to match the interior and
exterior fields. In region III, r<a, the material parameters are
e, and 11. Therefore, the wavefunctions in the interior region,
region III, take the forms

E ihz in4.
(TM) 1 in pJ(inr(T)= PnJn( tre (74)

H ihz in4t

(eE) T3 in q nn(r)e n  (75)

Only the Bessel function is required since it is finite at r=0.
Using these results for the wavefunctions the scattered fields in
a given region may be obtained by using equations 65, 66, 67, and
68. For example, in the exterior region, region I, where r>b, the
TM scattered fie.ds ar. obtained by inserting the wavefunction 70
into the set of equations 65 and 66, and the TE scattered fields
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are obtained by inserting 71 into equations 67 and 68. The
resulting TM scattered fields are, for r>b,

ETM iEoeihz nh nEr  = anI (rRi

TM . iE°eihz in (in) in4
4) (ir anHn(9 r)e

TM . Eoeihz i n ZaimO,

z  IF A aHn(r)e

TM iHeihz i n in ino,

Hr 9r anHn(Zr)e

TM ihz .n in.
H = iH~e i a HA~r)e

And, the resulting TE scattered fields in the region r>b are

TE ihz n in in,
E = -iEe i AF bn H n(r)e

E TE = iEoeihz i in bnHA(Zr)ein,
m

H E r iHoeihz in I b nHA( r)e n

TE iHihz in h iinj

H4 = (in) bnHn (r)e

TE ihz n Z inOH z  He i bnH n9=r)e
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The scattered fields in the other regions are obtained similarly.
In general, the scattered fields are of the form

TM TE
s  Es +E s

Having determined explicit expressions for the scattered
fields the next step is to obtain expressions for the incident
fields. The incident planewave propagates at an angle 9 to the x-
axis as shown in Figure 2. The k-vector, or wave normal, lies in
the x-z plane. Two distinct states of linear polarization of the
incident wave will be treated seperately. The case in which the
E-vector of the incident wave lies in the x-z plane shall be
called the TM incident wave. And the case in which the H-vector
of the incident wave lies in the x-z plane shall be called the TE
incident wave. In rectangular coordinates the electromagnetic
fields of the TM incident wave are given by

(TM) Einc = E,(-sine ex + cose eZ) eik(xcose + zsine)

(TM) Hinc = -Hey eik(xcsO + zsin).

And the fields of the TE incident wave are

(TE) Ein c = E0e e ik(xcosO + zsinO)

(TE) Hinc = H0 (-sin8 ex + cose ez) eik ixcos+

where H.-Ac0 .I. E., and k=w/c. The components of the incident
wave in cylindrical coordinates may be determined by using the
transformation of basis vectors:

er = coso e x+ sin4 ey

e (P -sin e X+ coso e .
x2y

24



Figure 2. Geometry for oblique incidence. Side view.

The cylindrical components of the TM Incident wave are

ihz ikxcose

(T) Ez = E,(-snco)e e

ihz ikxcosE = E0 (-sinsn)e e

E ( = E0 (-cos)e ihz eikxcos,

ihz ikxcose

E0 = E,(-cos4)e eh kcs

H e5



Hr = H(-sinecos)e ihze ikxcos
,

ihz ikxcosO
H = H,(sinesin))e e

ihz ikxcos .

Hz M H,(cose)e e

The incident fields may be expanded in a series of Bessel
functions by using the Fourier series representation

eikrcos4cos8  
- in jn(Zr)e nO,

where k=kcosG. The following identities are also needed

sin4) eikrcoscosO. 1 d (eikrcoscosj

cos4) eikrcoscos8 = (-i) (krcoscse],

where Z=kcos8. Using these identities the required expansions of
the TM incident wave are as follows

(TM) E = hih z  in h Jn(Zr)e in l (76)

i n h )Jin(,

(TM) E0 Eoeihz in (j)h-t(in) Jn( ir)e (77)

(TM) Ez = E0 eihz in Z Jn(2r)e in4) (78)
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ihz n 1 in,(TM) Hr W Hoe 1 -(in) Jn(lr)ein (79)

(TM) H = Hoeihz in (i) Jn (r)ein(. (80)

Similarly, the required expansions of the TE incident wave are

(TE) Er ihz in 1 (in)

(TE) Er = -Eoeihz in (i) n(tr)e , (82)

(TE) Hr -H~eihz i n (i)~ Jn(. r)e ,n (83)
= oihz n in O

(TE) H Hei i (i)F-r(in) Jn(r)en, (84)

(TE) Hz = Hoeihz in Z Jn(Zr)e in .  (85)
-m

Having solved Maxwell's equations for the scattered fields and
then obtained series expansions of the incident planewave, the
total fields may be written down at once. The total
electromagnetic fields in the region exterior to the cylinder,
for r>b, are given by the sum of the incident and scattered
fields. In the interior region, for r<a, and inside the
conducting layer, a<r<b, the total fields are given by the
expansions for the scattered fields alone. The expansion
coefficients may then be determined by imposing boundary
conditions on the fields at the surfaces of the conducting
cylinder. This procedure shall be carried out for both the TM and
TE incident waves in the following sections, sections 5 and 6.
Although the full solutions shall be presented, the shielding
effectiveness shall not be ca.±-ulateC for the case of oblique
incidence due to the complexity of the solutions.
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5. OBLIQUE TM INCIDENT WAVE

In this section the complete electromagnetic field solutions
shall be obtained for the scattering of an obliquely incident TM
planewave by a circular cylindrical conducting shield. These
solutions differ from the solutions in the case of a
perpendicularly incident TM wave in that the scattered fields
contain both TM and TE components. Therefore, the solutions for
the case of an obliquely incident planewave require eight
independent sets of expansion coefficients instead of four. This
is a consequence of the breaking of the perfect two-dimensional
symmetry in the previous problem. For oblique incidence, it is
interesting to note that if the cylinder were a perfect conductor
then no mixing of the TM and TE scattered fields would occur and
a TM incident wave would give rise to a TM scattered wave only,
as in the case of perpendicular incidence. This implies that for
a good conductor the secondary scattered modes, TE in this case,
are of low intensity relative to the dominant TM mode.

Proceeding now with the solution. In the exterior region,
region I, where r>b, the total fields are given by

Er=i~eh " iU + hn)en

E r =iEe ih z  i n[ JA(Zr) + anH (Zr) + i- bnHn(tr) in, (86)E I iIih nH inihn nh

E= iE-e ihz in(ihn, (tr) + ihn a Hn(Zr) - b nr))e in ,  (87)

H) 1h n nnn n A nH ))in (

= ehZJn(kr) + F anHn(,r)e ( (88)
ih ~n PdLn hin,' 89

Hr in~iHaei in~n (Zr) + LaH(Pr) - it b HPr))ein, (9

H M iHoe ih z  in(j( Zr) + aH( Zr) + h-(in)bnHn(r)]ein (90)

Hz M H e ihz i n[Z bnHnlZr))ein4. (91)
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The total fields inside the conductor, that is, in region Ii,
where a~r<b, are

Er i~ehZ~~{ [nJA(Xr) + dnHA(Xr)] +
-40

+ inE [f J X)+gH(r]en)(92)

xrz 10 n(Xr) + g H (r)]n
E w iEoeihZ h (in)lcj

- [f nJA(Xr) + g nHA(Xr)])ei 4  (93)

Ez= E~eiz i n~ [ cnjn(Xr) + dnHn(Xr)]e ""n , (94)

H r = iHoeihz i in ((o-iwc)jn [cnJn(Xr) + dnHn(Xr)] +

+ h [f n'A(Xr) + g HA(Xr)])einO , (95)

, M -iHoe ihz i n f(o-iwc) [c JA(Xr) + dnH(Xr)] +

- (in) [fnJ n(Xr) + g nHn(%r)])ein,(6

Hz Haeihz E in~ [fnj(Xr) + gnnX)] n) (97)

Note that the term (o-iwc)/(iwc,) iL. equati1 ons 95 and 96 is equal
to -y2/k'.
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The total fields on the interior of the shield, in region III,
where r<a, are given by

E iEihz in (98)
-m1

EW iE.eihz in ( h (r)in,

- n n- qnjlA(r))e (99)

Hr ~-0 _iteh n nn [in hneH ioe in ( ~PnJn(91r) - [ qnJn(z.r))e (101)

, iHzehZ in ZpJ'(r) + kr-(in) gnJnl~r))ein *, (102)

Hz M Hoe ih z  in  qnJn(Zr)e in .  (103)

To determine the expansion coefficients the bou'ndary conditions
must be applied at the surfaces r-a and rob. The boundary
conditions require that the tangential components of the E-field
and the H-field be continuous on the boundary surfaces. The
condition that E is continuous at r-b implies

h(in)Jn(Lb) + RZb(in)anHn( b) - bnHA(Lb)

h,
hT(in)[cnJn(Xb) + dnHn(Xb)] - [fnJ'(Xb) + gnHn(Xb)]. (104)
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The condition that Ez is continuous at r-b implies

zj(Zb) + E anHn(tb ) - [CnJn(Xb ) + dnH (Xb)]. (105)

The requirement that H is continous at r-b implies

JA(%b) + a HA(Zb) + h (in)bnHn(-b)

:[CnJ(xb) + dnHA(xb)] + (in)[fnJn (Xb) + gnHn(Xb)]. (106)

The requirement that Hz is continous at r=b implies

bnHn(Zb )  [fn n(Xb) + gnHn(Xb)]. (107)

The requirement that E is continous at r-a implies

S(in)[CnJ (Xa) + d H(Xa)] - [fnJA(Xa) + gn A(Xa)]

h
= -,_(in) pnJn(Za) - qnJn(Ra). (108)

The requirement that Ez is continous at r-a implieszZ

[CnJn(Xa) + dnHn(Xa)] = Z n a). (109)

The requirement that H is continuous at r=a implies
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i:[cnjA(Xa) + dnHA(Xa)] + xa(in)[fnJn(Xa) + gnHn(Xa)] =

h
- pnJ(Za) + -la(in) qnJn( 9a). (110)

And, the requirement that Hz is continuous at r-a implies

[fnJn(Xa) + gnHn(Xa)] - 1 qnJn(la). (111)

These are all of the required boundary conditions. The full set
of boundary conditions constitutes a nonhomogeneous set of eight
equations in the eight unknowns a, bn , cn? dn , fn' gn' Pn, and
qn" This system may be solved by using the standard technique.

The explicit soxutions for the coefficients is straightforward
and shall nct be given here. According to Kramer's rule, the
solutions are given by relations of the form

U, b U c U, d=U4n= V nV' n= V n= V'

=SU. U, U0 12
fn = V2" gn= 26 " Pn= H • 29n= V (112)

where the determinants Ui and V are determined by inspection of
the eight equations 104, 105, 106, 107, 108, 109, 110, and ill.

This completes the solutions for the electromagnetic fields
for the scattering of an obliquely incident TM planewave. Due to
the fact that the expansion coefficients are given by eight-by-
eight determinants the shielding effectiveness for the case of
oblique incidence shall not be calculated.
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6. OBLIQUE TE INCIDENT WAVE

In this section the complete electromagnetic field solutions
shall be obtained for the scattering of an obliquely incident TE
planewave by a circular cylindrical conducting shield. As was
noted in the last section these solutions differ from the
solutions in the case of a perpendicularly incident TM wave in
that the scattered fields contain both TM and TE components.
However, if the cylinder were a perfect conductor then no mixing
of the TM and TE scattered fields would occur and a TE incident
wave would give rise to a TE scattered wave only, as in the case
of perpendicular incidence. This implies that for a good
conductor the secondary scattered modes, TM in this case, are of
low intensity relative to the dominant TE mode.

The expressions for the scattered fields in each of the three
regions are the same as in section 5 with the expansion
coefficients replaced with capital letters: A, B, C, D, F, G, P,
and Q. Only the incident fields are different. The development of
the solutions is identical to that in section 5. Proceeding now
with the solution, in the exterior region, region I, where r>b,
the total fields are given by

Er i~ ihz n inin hn(in b H ((r) ,rn)ein ,(l 3Er = Ee r nLr AnHn -(bnn(r) (113n)

E iE eihz E in(i-Jn (r) + ih A Hn(Zr) - b H ( Zr)ein, (114)r -0krn 1 nn9, nn(

E - Eoeihz in n in, (115)

H -iHeihz in(JnlZr) + - nHn( r) -h BnH(r)ein, (116)

-o

ihz ihn in
- i -i AHJn(r) + AnH((15r) + -- BnHn(r)i,(i17)

-OD

ihz in( h,( inhJn

Hz  - H0e i h z  in[ Jn gr) + Z B HnlZr)]e i n 4 .  (118)
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The total fields inside the conductor, that is, in region II,
where a<r<b, are

E~~~ iEeiz in ( h [CnJA(Xr) +D H(Xr)]+

in(

+ 1- (F J .(XEr) + G ~(Xr)])ein (119)

E iE~e ih in h ~(in)[C J (xr) + D Hn +IE-X n + n ~X

- [F nJA(Xr) + G nHA(Xr)])ein (120)

z Eoe ihz i n (Cj(X)+ D, Xr e (121)

Hr =iHoe~h ih an 1 2 (r + Dn (Xr)] +

hkr n[FJ(Xr) + G H(Xr)])e in4), (123)

-Ho i 1 2f IY [F (Xr) + DH(Xr)]i 14
- em
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The total fields on the interior of the shield, in region III,
where r<a, are given by

E= iEnenihzl n h P r) + n QnJn(Zr))e in, (125)
E ~nJ + ii-h i 9tr

E iEe ihz n h-(in) PnJ(lr) - Q JA(Zr))ein4 (126)
in FTF n n nn

Ez  1Eeihz 0 in 9 PJ(Zr)ein4,  (127)

rn [in , inHr=-i- ' Pn ~ g r  - h Qn nl 9 r)e ( 128)

H iHoeihz i n (PnJn(Zr) + h(in) QnJn(r))ein0, (129)

Hz = Hoeihz " i QnJn(r)e in .  (10)

To determine the expansion coefficients the boundary conditions
must be applied at the surfaces r-a and r=b. The boundary
conditions require that the tangential components of the E- and
the H-fields be continuous on the boundary surfaces. The
condition that E is continuous at r=b implies

hh

-Jn(tb) + .(in)AnHn( , b) - BnH~l~b)

,Tb(in)[CnJn(Xb) + DnHn(Xb)] - [FnJA(xb) + GnHA(Xb)]. (131)
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The condition that Ez is continuous at r-b implies

ZAnHn(b) - ' [CJ(Xb) + DH(Xb)]. (132)

The requirement that H is continous at r-b implies

h h- (in)Jn(Zb) + AnHn( b) + (in)BHn( b) -

*:[CnJA (Xb) + DnHA(Xb)] + h (in)[Fn(Xb) + GnHn(Xb)] . (133)

The requirement that Hz is continous at r-b implies

Rn(Zb) + R B nHn( Zb) = [FnJn (Xb) + GnHn(Xb)]. (134)

The requirement that E is continous at r-a implies

ha(in)[CnJn(Xa) + DnHn(Xa) ] - [FnJA(Xa) + GnH(xa) ]

hh-a(in) PnJn( ka) - QnJ (a). (135)

The requirement that Ez is continous at r-a implies

S[CnJn(Xa) + DnHn(Xa)] = PzJn(%a). (136)

The requirement that H is continuous at r-a implies
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{:[CnJA(Xa) + DnHA(Xa)] + Rxa(in)[FnJn(Xa) + GnHn (Xa)] =

-PnJA(Za) + V-a(in) QnJn(ta). (137)

And, the requirement that Hz is continuous at r-a implies

[Fnn (Xa) + Xa)] ZQJn(a). (138)

These are all of the required boundary conditions. The full set
of boundary conditions constitutes a nonhomogeneous set of eight
equations in the eight unknowns An" Bn, Cn, Dn, Fn, Gn, Pn" and

Qn. This system may be solved by the standard procedure. The

explicit solutions for the coefficients is straightforward and
shall not be given here. According to Kramer's rule, the
solutions are given by relations of the form

A= 2 1, B= U, C UD .nV nV n= V n= V

n= V nP V Qn=  , (139)

where the determinants Ui and V are determined by inspection of
the eight equations 131, 132, 133, 134, 135, 136, 137, and 138.
This completes the solutions for the electromagnetic fields for
the case of oblique incidence. Due to the fact that the expansion
coefficients are given by eight-by-eight determinants the
shielding effectiveness for the case of oblique incidence shall
not be calculated.

Although the solutions of the fields is somewhat more
complicated than in the case of perpendicular incidence, the fact
that for a good conductor only a single mode is dominant, implies
that the behavior of the shielding effectiveness should be very
similar to the case of perpendicular incidence. While this is
almost certainly true for near perpendicular incidence, for large
angles of incidence, and especially grazing incidence, this can
only be verified through calculation.

37



7. SHIELDING EFFECTIVENESS OF THE CYLINDER

The main purpose of this investigation is to calculate and
plot the shielding effectiveness verses frequency for hollow
cylindrical conducting shields. Results shall be presented only
for the case of perpendicular incidence. For perpendicular
incidence, the shielding effectiveness is defined for the TM
incident wave, the E-polarized wave, as the ratio of the
magnitude squared of the E-field on the axis of the cylinder to
the magnitude squared of the E-field of the incident wave

Eaxis 2

(TM) SEe = i c 1 (140)

Similarly, the shielding effectiveness for the TE incident wave
is defined as the ratio of the magnitude squared of the H-field
on the axis to the magnitude of the H-field of the incident wave

(TE) SEh - is 2. (141)1*inc

The shielding effectiveness is usually expressed in terms of dB
notation. For equations 140 and 141 the shielding effectiveness
in dB is

(TM) SE e(dB) - -20 log IE axis (142)
e Ei ncI

(TE) SEh(dB) - -20 log IHax sincs (143)

To calculate the shielding effectiveness the values of the fields
on the axis must be determined. Using the series expansion of the
E-field in region III for the TM incident wave, equation 29,
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together with the fact that Jn(0)= 1 if n=0, and Jn(0)= 0 if

n=±l,±2,..., the field on axis is given by

(TM) Eaxis - Eod0 . (144)

Similarly, from the series expansion of the H-field for the TE
case, equation 47, the field on axis is given by

(TE) Haxis = HoDO. (145)

Consequently, the shielding effectiveness for the TM and TE
incident waves are

(TM) SEe = Ido1 2 , (146)

(TE) SEh = ID, 2. (147)

The quantities d, and D. are evaluated in Appendix B and
Appendix C, respectively. For the case of perpendicular incidence-
the final results for the shielding effectiveness for the TM and
TE incident waves take the following forms

(TM) SEe 1/2 =Ia + pp 1 4 (148)

(TE) SEh 1 / 2 . IXa ' + pp'I 4 (149)

where
iT

X 2Ae sin(6+i6), (150)

iTI

= 2Ae cos(6+i6), (151)
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a - Y2H0 (kb)J0 (ka) + kMH 1 (kb)J1 (ka), (152)

p yk[J 0 (ka)Hl(kb) - H0 (kb)Jl(ka)], (153)

a' k2H0 (kb)J0 (ka) + y2H1 (kb)Jl(ka), (154)

and
p' yk[J 0 (ka)Hl(kb) - J1 (ka)H0 (kb)], (155)

where

A Iya 1 1- 21ybl-1/2, (156)

and

= 2-1/2yl(b-a). (157)

These results were derived by approximating the Bessel and Hankel
functions having the complex arruments z=ya and z-yb, by their
principle asymptotic forms. Consequently, these equations are not
exact, and they do not hold for all frequencies. However, as
discussed in Appendix B, these equations are sufficiently
accurate for all frequencies in the range Ao-5pa>125.

The shielding effectiveness was calculated for a conducting
cylinder having an outer diameter of 155 mm., conductivity

7 -1 -110 ohm m , and thickness 0.1 mm. The results for the TM case
are shown as a solid curve in figure 3, and the results for the
TE case are shown as the solid curve in figure 4. The low
frequency behavior is not very interesting; below 10' Hz. the
shielding effectiveness decreases to 0 dB almost as a straight
line on a log-log plot like figure 3. For higher frequencies the
shielding effectiveness increases rapidly as is expected by
comparison with the behavior of a planar shield. Furthermore a
fine structure appears. It is well known that a pair of parallel
conducting planes gives rise to Fabry-Perot resonances, causing
increased transmission of the incident beam, when the distance
between the plates is equal to integer multiples of a half
wavelength. A similar resonant behavior is expected for the
cylindrical conducting shell, causing an increase in the
penetration of the cylinder by the incident wave. This is born
out by the theory. As can be seen in figures 3 and 4, the
shielding effectiveness shows sharp dips at the resonant
frequencies given by the zeros of the equations
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J0 (ka)-O, for the TM incident wave, and (158)

J,(ka)-0, for the TE incident wave. (159)

A derivation of the resonance conditions, equations 158 and 159,
is given in Appendixes B and C. The shielding effectiveness drops
by about 3 or 4 orders of magnitude at the resonance frequencies
in this example. Nevertheless, in practice, and especially for
thick shields this effect is negligible. Calculations of the
shielding effectiveness for a thick shield having a 1.0 mm
thickness prove this. The resonances are much less pronounced for
the thicker shield due to the overall magnitude of the
attenuation of the shield.

Using the solutions for the shielding effectiveness developed
in Appendix B and Appendix C an approximate closed form result
for the shielding effectiveness is derived in Appendix D. The
approximate formula, which is identical for the TM and TE modes,
is given by

SE e 2 1, (160)

or, in terms of dB,

SEdB = -){log[ 4-- - log(w) + (2opl 1 /2(b-a)log(e) w1/ 2). (161)

The shielding effectiveness calculated by using equation 161 is
plotted as a dashed curve in figures 3 and 4. The agreement with
the exact solutions is very good for frequencies in the resonance
regime. For lower frequencies this approximation breaks down. As
is shown in Appendix D, this formula diverges as w approaches
zero and therefore cannot be used for frequencies below

=2 12 1 -(162)
00.- p0 (b-a)2 '

However, the approximate formula 161 is very useful since it
allows shielding calculations to be made quickly on a hand
calculator without the need for complicated mathematics or
computer programs.
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8. ELECTROMAGNETIC FIELDS FOR THE SPHERE

A conducting sphere with inner radius r-a and outer radius
r-b is situated in empty space. The material parameters of the
conductor are c, V., and a. The conductor is assumed to be a non-
magnetic material, so it is possible to set -V'.. A linearly
polarized planewave of frequency f is incident on the sphere. The
planewave propagates along the z-direction of a cartesian
coordinate system with the origin at the center of the sphere.
The total field in the region exterior to the sphere is given by
the sum of the incident field and the scattered field, that is,

E - Einc + Escat.

The time dependence of the field vectors is the same as that of
the incident wave, which is assumed to be e-t where the
imaginary unit i2 -1 is used to prevent confusion with the
spherical Bessel function J(z). The fields of the incident
planewave are

ikzEx W E0e , (163)

ikz
Hy = H ,k (164)

where k-w/c, c-1/*.c. is the speed of light, and H0=,/*7jT E0.
Following Stratton, the fields may be expanded in terms of the
vector spherical wavefunctions L, M, and N, since these functions
form a complete, orthogonal set of solutions to the vector wave
equation in spherical coordinates. The procedure is well known.
The fields of the incident planewave may be expressed by the
expansions

Ein - Eikz ex E, in 2n+1 M1 iN' (165)inc  n n(n+) in- ein p-kr'

H - H0eik z ey = -Ho i i n 2n+ [M1 iNn (166)inc n=1 n(n+l) e, in+  0ln p=kr'
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where the vector spherical wavefunctions are given by

dP'
MI +1 (p)PA(cos8) cos4 e (P) n sine e, (167)
o,in in i n ) -( )

-1 dP'
SI (p)PA(COS8 ) sin (p) cos4) eV, (168)Me,ln T s- in p n - JnP To--

and

1 dP'
No'in= n(n+l) jn(p)PA(cose) sino er + . [Pjn(P)]' n sin0 ee +

+ 1 *P(cosS) cos4 eV (169)
psin8 [Pnn(p)]'

dP'N1  n~+1)~ Ei~()1 dp os e
Ne,l n(n+l)p jn(p)PA(cos8 ) cos4 er + . [pjn(p)]' n cosO 8 +

1
psine [PJn (p )] ' P(cose) sin0 e., (170)

the prime denoting differentiation with respect to p. The
function jn (p) is the spherical Bessel function, and the function

PA(cose) is the associated Legendre polynomial with upper index

m=1. The wavefunction L is not required for expansions of the E
and H fields since the divergence of L is not zero. The
wavefunctions L, M, and N compose a fundamental set of solutions
of the vector Helmholtz equation, in spherical:coordinates

-VxVxF + k2F - 0. (171)

Furthermore, the functions M and N satisfy the relations

VxM - kN, (172)

VxN = kM. (173)
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A derivation of the vector spherical wave functions, their
orthoganality relations, and other properties is given in [xx].
The scattered fields outside the sphere may be expressed in terms
of series expansions analogous to those used for the incident
fields. For r>b the scattered fields are given by

Escat - E, i n 2n+1 [anM;,in- ibnN: in]p=kr (174)n 1 n(n+l)

Hscat - -H, inn2n+l [b M' + ianNL inlp=k r  (175)
n=1 n+1) n e,ln n ,n'

where the wavefunctions with the superscript 3, M3 and N', are
obtained from the defining relations for MI and N' by replacing
the spherical Bessel function Jn(p) with the spherical Hankle

function of the first kind hl(p). Next, similar expansions for

the fields inside the conducting shell shall be obtained.

Assuming a time dependence of the form e- i t , Maxwell's equations
inside the conductor are given by

VxE - iwVOH, (176)

VxH = (o-iwe)E, (177)

V*E = 0, (178)

V*H = 0, (179)

where the material equations are

D = cE, (180)

B - V 0H, (ii)

J OE. (182)

The field equations imply that the field vectors E and H satisfy
the vector wave equation

46



VxVxE + y2 E = 0, (183)

VxVxH + y2H - 0, (184)

where
Y2 i 0-ioe) (185)

Therefore, the fields inside the conductor, for a<r<b, have the
expansions

E = E0  
n 2n+ [CnM in+ dnMoIn_ ifnN;n Nnal n(n+l) n0,1 n0 ,in n n ge,ln p=yr

(186)

H - H -ii in 2n+1 [fnM3 in+ gNeln 'no
n=H n(n+l) elf + gMe1n+ icnNsln+ nNin p=yr

(187)

Wavefunctions of both the first and third kinds are required to
be able to match the boundary counditions with both the exterior
and interior fields. Similarly, the fields inside the shielded
volume, r<a, have the following expansions

E - E0 in 2n+I iqnNI (188)

n n(n+l) PnMo,ln ninp=kr

H = -Ho in 2n+1l19
H n(n+l) [qn.',ln+ iPn'o,lnp=kr (189)
n-i

Only the wavefunctions of the first kind may be used in these
expansions since the fields must be finite at the origin.

The next step in the solution of the boundary value problem is
to match boundary conditions. The boundary conditions on the
field vectors require that the tangential components of the field
vectors E and H must be continuous at the boundaries r-a and r=b.
The condition that the tangential components of E are continuous
at r=b implies
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Jn(kb) + anhn(kb) - cnhn(Yb) + dnJn(Yb), (190)

([Pin(P)]'+ bn[phn(p)]']p-kb - Ifn[Phn(P)]'+ gn[PJn(P)]')p.yb.

(191)

The condition that the tangential components of H are continuous
at r-b implies

in(kb) + bnhn (kb) - [fnhn(yb) + gnJn(yb)), (192)

[[pJn(p)] ' + an[Phn(P)]')pkb - fcn[Phn(P)]' + d n[PJnlP)]']p=yb .

(193)

The condition that the tangential components of E are continuous
at r-a implies

Cnhn(ya ) + dnJn(Ya) - pnJn(ka), (194)

[fn[Phn(P)]' + gn[Pjn(P)l')p=ya - i qnU[PJn(P)]')p=ka . (195)

And lastly, the condition that the tangential components of H are
continous at r=a implies

[fnhn(ya) + gnJn(ya)] - qnJn(ka), (196)

(Cn[Phn(P)]' + dn[Pjn(P)],)pmya pnl[pjn(P)],]pka. (197)

These are all the required boundary conditions. This set of
equations constitute a nonhomogeneous system of eight equations
in eight unknowns. The solutions of this system yield the
expansion coefficients for the fields. To investigate the
shielding properties of the conducting sphere it is necessary to
solve for the fields inside the shielded volume. This implies
that it is necessary to solve for the coefficients pn and qn" To

avoid the direct evaluation of 8x8 determinants the system shall
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be reduced to a system of 4x4 equations which shall then be
solved by Kramer's rule. The coefficients an " bn, Pn' and qn

shall first be eliminated from the eight equations to yield four
equations in the four unknowns cn, dn , fn' and gn" Having solved

the 4x4 system of equations, the coefficient Pn may be calculated

from cn and dn by using equation 194, and the coefficient qn may

be calculated from fn and gn by using equation 196. To eliminate

an, solve equation 190 for an , and then substitute the result

into equation 193. Omitting the subscript n from all the
expansion coefficients and all the Bessel and Hankel functions
for simplicity, this procedure yields the result

c[rh(yb)h(kb) - rh(kb)h(yb)] + d[r.(yb)h(kb) - rhlkb)j(yb)]

r.(kb)h(kb) - rh(kb)j(kb), (198)

where rh(yb) - [[Phn(P)]')pyb ,

rj(kb) = [pj n(P)]')p)kb , etc. (199)

The right-hand-side of equation 198 may be simplified further by
taking the derivative in the r's yielding

p[j'(p)h(p) - h'(pj(p)]p=kb;

then, substituting h(p) = j(p) + iy(p), this equals

-ip[JnlP)yAlp) - hA(P)Yn(P)]p=kb .

The bracketed term is the Wronskian of Jn(p ) and yn(p), which

equals i/p2 . Thus, the left-hand side of equation 198 takes the
form

-i
rj(kb)h(kb) - rh(kb)j(kb) =
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To recapitulate, equation 198 takes the simplified form

c[rh(yb)h(kb)-rh(kb)h(yb)] + d[r (yb)h(kb)-rh(kb)J(yb)] -

(200)

Next, to eliminate bn solve equation 192 for bn, and then
substitute the result into equation 191. This yields

f[rh(yb)h(kb) - {2 rh(kb)h(yb)] + g[r (yb)h(kb) - 2rrh(kb)j(yb)]

[r.(kb)h(kb) - rh(kb)j(kb)]

S (P[Jn(p)hn(p) - hA(P)Jn(P)]p=kb

V -i
= " (201)

To eliminate p n, solve equation 194 for pn' and substitute the

result into equation 197. This yields the equation

c[rh(ya)j(ka) - rj(ka)h(ya)] + d[rF(ya)J(ka) - r.(ka)j(ya)] = 0.

(202)

Lastly, to eliminate qn solve equation 196 for qn and substitute
the result into equation 195. This yields

f[rh(ya)j(ka) - 2 rj(ka)h(ya)] +

+ g[rj(ya)j(ka) - :rj(ka)j(ya)] - 0. (203)
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The reduced system of equations is given by the four equations

c[r h( yb)h(kb) - rh (kb)h(yb)] + d[r (yb)h(kb) - r h(kb)j(yb)]

c[r h( ya)j(ka) - r i(ka)h(ya)] + d[t' (ya)i(ka) - r i(ka)i(ya)] =0

f[rh (yb)h(kb)-.Jrh (kb)h(yb)] + g~ (y~~b- -ib~~

f[rh (ya)j(ka)-i 2r j(ka)heya)] + g[r (ya)j(ka)- r i(ka)jcya)] - 0.

The matrix of coefficients has the convenient block form

Wi 0 0
00 0 0 (204)

0 0

where W,

[rh( yb)h(kb) - r h(kb)h(yb)J [r j(yb)h(kb) - rh(kb)j(yb)]

[r h( yaj(ka) - r j(ka)h(ya)] [r j(ya)i(ka) - r i(ka)i(ya)]

and W. -

[rh(yb)h(kb) - J2r (kb)h(yb)] [r (yb)h(kb) - *rh(kb)j(yb)1

[r h yaijka) - i r j(ka)h(ya)] [r (ya~jka) - rj(ajy)
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The determinant D is given by D = W,W.. Evaluating the
determinants W, and W., and rearranging terms to group together
the functions containing the complex arguements z-ya and z-yb
gives the result

W, - J(ka)h(kb)[rj(ya)rh(yb) - rj(yb)rh(ya)] 1 +

+ r(ka)h(kb)[h(Ya)r(yb) - J(ya)r h(yb)12

+ J(ka)rh(kb)[rh(ya)j(yb) - rj(ya)h(yb)] 3

+ rj(ka)rh(kb)[j (ya)h(yb) - h(ya)j(yb)]4, (205)

and

W2 = j(ka)h(kb)[rj(ya)rh(Yb) - rh(Ya)r j (Yb)]l +

+ r (ka)h(kb)i:[h(ya)rj(yb) - J(ya)rh(yb) ]2

+ J(ka)rh(kb)iZ[rh(ya)j(yb) - r(ya)h(yb)] 3

+ r (ka)rh(kb)j[j(ya)h(yb) - h(ya)j(yb)]4 . (206)

The bracketed terms have been numbered from 1 to 4, for further
reference. Now it is possible to solve for the coefficients c and
d to obtain p. Using Kramer's rule, the coefficient c is given by
c - U,/D, where

r [j(yb)h(kb) - rh(kb)j (y b)] 0 0

0 [rj(ya)j(ka) - rj(ka)J(ya)] 0 0
U, U- -

W2
0 0
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N-i

thus, c - - [r,(ya)j (ka) - rF(ka) j (Ya) ] W.. (207)

Similarly, solving for d, d = U./D, where

-i[rh(yb)h(kb) - rh(kb)h(yb)] I 0 0

[rj(ya)J(ka) - r,(ka)J(ya)] 0 0 0
U2 -

0

W2
0 0

thus d +i [ 28

thus d - - [rh(ya)j(ka) - rj(ka)h(ya)] Wa. (208)

Now solve for p from equation 194. The solution for p is

+1 -1 +1 +1 -1- p[h'(p)j(p) - j'(p)h(p)]Wpya W 1  T - ± W 1 . (209)

Next, solve for f and g to obtain q. The solution for f is given
by f - U,/D, where

-i
-1 0

W,
0 0

U2

0 0 F-5 [r,(yb)h(kb) - 2 r h(kb)J(yb)]

0 0 0 [rj(ya)j(ka) - :*rj(ka)j(ya)]
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thus f - y [a)J(ka) - J:rj(ka)J(ya)] Wi. (210)

The solution for g is g - U./D, where

0 -i

W,
0 0

U4

0 0 [r (yb)hckb) - J.rh(kb)j(yb)]

0 0 [rj(ya)j(ka) - :2 rj(ka)J(ya)] 0

thus g - " [rhajk) - J:r (ka)h(ya)] W'. (211)

Now solve for q from equation 196. The solution for q is

q= -W -1.  (212)

The solutions ft- the expansion coefficients which have been
obtained in this section, and p and q in particular, are exact.
Although the integer subscript n has been omitted (P-Pn' qqn'

etc.), the results hold for all n-1,2,3,.... Thus, the exact
solution for the electromagnetic fields for scattering from a
spherical conducting shell have been obtained.

Next, the explicit solutions for p and q shall be used to
obtain the shielding effectiveness of the sphere. Since the
shielding effectiveness only depends on the cavity fields, the
fields in the conducting walls and in the exterior region are not
required. Consequently, explicit expressions for the coefficients
a, , c, d, f and g are not required in the analysis.
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9. SHIELDING EFFECTIVENESS OF THE SPHERE

The shielding effectiveness shall be calculated with
reference to the fields at the center of the sphere. The
shielding effectiveness is most commonly defined as the ratio of
the magnitude squared of the electric field at the center of the
sphere to the electric field of the incident planewave,

SE - E(r) 1Einc (213)

This definition shall be called the electric shielding
effectiveness. Similarly, the shielding effectiveness may be
defined as the magnitude squared of the ratio of the magnetic
field at the center of the sphere to the magnetic field of the
incident wave,

SE. IH(r=0) 12 (24
m .~o1 (214)Hinc

This definition shall be called the magnetic shielding
effectiveness. Another definition may be given in terms of the
energy of the fields as the ratio of the energy density at the
center of the sphere to the energy density of the incident wave

SE = 2  U(r=0). * (215)
Uinc

This definition shall be called, simply, the electromagnetic
shielding effectiveness. The factor of two is included so the
shielding effectiveness goes to 1 as the frequency f goes to
zero. It will be shown that for planewave incidence

SE = SEe + SEm  (216)
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In terms of the complex fields, and in free space, the energy
density is given by the relation

U - j1 coEE + P.HoH*]. (217)

The energy density of the incident planewave is

Uo. - (218)

To proceed with the calculation of the shielding effectiveness,
first note that since jn(r-0) - 0 for n-1,2,3..., then

0 , - 0, n-1,2,3 ... (219)

({',1n}P1  - 0, n-1,2,3... (220)

Also, from the identity

[Pi (P)]' I M [(n+l)jni(p) - nJn+i(p)], n-1,2,3...,

and the fact that

Lim in(P) 1/3 for'n-1,

p->O p 0 for n-2,3,4...,

the only nonzero wavefunction at p-0 of the type N is

(No"1,)P.o 2 [sinesin er - cosesino e + cos4 e.], (221)

-Ne,:}- -z [cosecos0 e8 + sine eo]. (222)
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Therefore, the fields take on a particularly simple form at the
center of the sphere since only one term in the series expansions
is nonzero, the fields are given by

W3 N (223)2 e o , e111p=0'

H = . HOpNoI (224)

Therefore, the magnitudes of the electromagnetic fields at the
origin are

E 2 12 _ (E0 2Iq,12 (_)2 N- 1 N - JE.( 2Iq, 2 , (225)2 o e'll Ne , 1p.0, (25

1H1 2 = 1H.12 1p,1 2 (_2)2 NI ON' = iH012 1PI•2. (226)

The shielding effectiveness, then, is given by

SEe = 1q,1 2 , (227)

SEm = ]p,]2, (228)

SE - Ip112+ Iq, 12, (229)

This establishes the relation between the three definitions of
shielding effectiveness given by equation 216. Substituting for p
and q from equations 209 and 212, the final formulas for the
electric and magnetic shielding effectiveness take the form

SE - - Ik/yl(ka)(kb)lw21, (230)

S=- /2 = 1 - l lkb)IwI. (231)
m Ta7
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where W, and W, are given by equations 205 and 206, respectively.
Similarly, the electromagnetic shielding effectiveness takes the
form

SE - (Ik/yI(ka)(kb)lW)- 2+ (IyaI(kb)1Wl)-2  (232)

In terms of dB, the shielding effectiveness takes the form

SEe (dB) - -20 Loglql - 20 Log(Ik/yjI(ka)(kb)lW21), (233)

SEm (dB) - -20 LogPpI - 20 Log(jyaj(kb)jWj), (234)

and

SE (dB) = -10 Log(Ip,12+ lq,12)

- -10 Log( Ik/yl(ka)(kb)1WI)-2+ (Iyaj(kblwj, 1)-2 ). (235)

All these results are exact. The spherical Bessel and Hankel
functions which are needed to calculate these quantities are
given in Appendix F. Appendix F also gives various approximations
for the spherical Bessel functions which are used in the
numerical calculations. For the low-frequency calculations the
quantities p, and q, are calculated from equations 209 and 212 by
calculating W, and W. directly from equations 205 and 206. For
the high-frequency calculations the brackets [],, []2' [3 , and
1]4 which appear in&euations 205 and 206 cannot be evaluated term

by term for reasons explained in Appendix F. Therefore some
approximations must be made to evaluate these quantities. The
details of these approximations are given in Appendix F.
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10. NUMERICAL CALCULATIONS FOR THE SPHERE

The shielding effectiveness is now calculated for a spherical
shell with inner radius a-77.4mm and outer radius b-77.5mm. The

conductivity of the sphere is a-107ohm-lm-1 which is
representative of good conducting materials such as copper or
aluminum. The results of the numerical calculations for the
electromagnetic shielding effectiveness at low frequencies is

shown in Figure 5. This plot covers the frequency range from 10
3

to 107 Hz. As the frequencY approaches zero the shielding
effectiveness goes to one, that is, zero dB, as expected. As the
frequency goes to zero the magnetic shielding effectiveness SEm
approaches one since a static magnetic field is not shielded by
the conductor. On the other hand the electric shielding
effectiveness SEe goes to zero since a static electric field
cannot penetrate the conductor, that is, the electric field
inside the cavity is zero. Therefore, the electromagnetic
shielding effectiveness goes to 1 since SE - SEe+ SEm .

It is remarkable that for frequencies from about 7x103 to

x10 7 Hz the shielding effectiveness is practically a straight
line. The slope of this part of the graph is 20 dB per octave. A
straight line approximation is roughly

SE (dB) - 20log(f) + C,

where the point at which the straight line intersects SE=0 dB is

C - -201og(f0 ), where f0= 5x103 Hz. Therefore the shielding
effectiveness is approximately given by

SE (dB) = 20log(f/f,), (236)

or SE - (f/f0 )- 2 . (237)

This is a very interesting result. According to equation 237 the
shielding effectiveness goes as one over the frequency squared.
Since the shielding effectiveness is equal to the square of tht
transfer function of the cavity .-ields with respect to the

59



-4b-

La 4

>3

4-)

a)

4-

cn

0n

LO

cm

(SP)~~~L SSNAS.-3DNc~H

w 00



incident fields this simple result suggests that analytical
expressions may be obtainable in the case of an incident
electromagnetic pulse. This idea will be developed momentarily.
First the low frequency results for the electric field shielding
effectiveness will be discussed. No graphical results are given
for this case since they are not very interesting. The numerical
results show that the electric shielding effectiveness decreases
approximately as a straight line over at least seven orders of

magnitude from 1 Hz to 107 Hz. The slope of the straight line is
-20 dB per octave. Therefore, the electric field shielding
effectiveness is given by the approximate equation

SE e(dB) = -20log(f) + C. (238)

At f=1 Hz, the calculations give SEe=C= 283.8 dB, and therefore

SE e(dB) = -20log(f/f,), (239)

e2
or SEe = (f/f1 )2, (240)

14where fl=1.549x10

The approximate forms for the shielding effectiveness just
obtained imply the relations

JH(0)f = (C/o 0 )-1, (241)
Hinc

IE(0)1 = (o/w1) (242)
Einc

These simple transfer functions may be used to obtain an
analytical expression for the fields at the origin when the
incident planewave is a pulse. In cases when the frequency
spectrum of the pulse is bandlimited to the range of validity of
equations 241 and 242 the response may be obtained by using
Laplace transforms. For example, in the case of a high altitude
nuclear burst the resulting electromagnetic pulse will have a
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waveform which is approximated very well by the double
exponential

Ei(t) - Eoy (e-At- e-at), t>O, (243)

where a-4.76x108 3-1 is the rise-constant, 0=4x106 s-lis the

decay-constant, Eo-50 kv/m is the peak electric field, and y=1.05
is a normalization factor. For the sphere diameter chosen in this
report the frequency spectrum of this pulse lies almost entirely
within the range of validity of 241 and 242. Therefore, using 241
and 242, the attenuated fields at the center of the sphere will
have the Laplace transforms

H(s) = Hi(s), (244)

E(s) = Bs E1 (s), (245)

where Ei(s) and Hi(s) are the Laplace transforms of the incident

4 -15pulse, A-2nf0-3.14x10 , and B=1/w,-1.03x10 . From 243 the
Laplace transform of the incident electromagnetic pulse is

F(s)a-) (246)Fi.s = Fo7 (s+a)(S+)'(

where F stands for either H or E. Therefore, taking the inverse
transform the fields at the center of the sphere are found to be

H(t) - AHoy [.Li + -at] - Ifi + e-t)], (247)

E(t) = BEoy [ae- t-  pe-Pt]. (248)

The analytical solution for E(t) is not of much practical value
because the attenuation factor A is so great. Nonetheless, these
expressions are a good approximation for the EMP response of a
spherical shield of these dimensions, i.e., a=77.Smm. As a final
comment, note that it is not necessary to use Laplace transforms
directly. Using the properties of the Laplace transform the
expressions 244 and 245 imply that the response in the time
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domain H(t) and E(t) are just the integral and the derivative of
the respective inputs Hi(t) and E1 (t).

Consider next the high-frequency results for the spherical
shield shown in Figure 6. These high frequency calculations were
made by making certain approximations to the spherical Bessel and
Hankel functions which are detailed in Appendix F. The results
which are given in Figure 6, however, are entirely accurate. The
most prominant feature in this Figure are the sharp dips above

109 Hz. These are resonances similar to those obtained for the
cylindrical shield. The resonance condition for the spherical
shield are derived in Appendix F. The resonances occur when
either of the following conditions is met:

j1 (ka) - 0, (249)

[PJ_ ( P ) ] = k a  - 0. (250)

The first few zeros of equation 250 are listed in Appendix F. In
general, the shielding effectiveness is reduced by three or four
orders of magnitude at resonance. However this effect is
negligible when compared to the overall magnitude of the
attenuation at these frequencies. As in the case of the
cylindrical shield an approximate formula for the shielding
effectiveness is derived in Appendix F which has the form

SE 8 E e- 1(ba). (251)

This approximate formula is plotted as a dashed curve in
Figure 6. Note that this is the same formula obtained for the
cylinder, equation 161, except for a factor of 2. A comparison
between this formula and the exact solution shows that this is a
very good approximation for frequencies in the resonance regime.
As explained in Appendix F, this formula has a lower limit on its
range of application since it diverges for lower frequencies.
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CONCLUSIONS

The theory of electromagnetic shielding has been presented for
a circular conducting cylinder and a conducting sphere. Starting
from first principles, the complete solutions for the
electromagnetic fields were developed first for the scattering of
a planewave by a cylindrical conducting shell, and second for a
spherical conducting shell. The shielding effectiveness of the
cylinder was defined with respect to the fields at the center of
the cylinder (on axis), and the shielding effectiveness of the
sphere was defined with respect to the fields at the center of
the sphere. In each case the fields at the origin have
a particularly simple form since all the terms in the series
expansion vanish except for the first one, and therefore it is
possible to exibit a single expression for the shielding
effectiveness. This is desirable from a practical point of view
since problems with convergence of infinite series may be avoided
in the numerical calculations.

The most outstanding feature of the shielding effectiveness is
the existence of resonances. In general, a series of discrete
resonances occur for high frequencies where ka>1. The
electromagnetic resonances for the cylinder and the sphere have
been investigated in detail and the resonance conditions have
been derived for both structures. In addition, an asymptotic
formula for the shielding effectiveness has been developed which
appears to be a good approximation in the resonance regime. To
this authors knowledge this result is new and it has not been
published in the open literature. While this formula does not
reproduce the resonances, it does account for the average
magnitude of the shielding effectiveness in the high frequency
limit.

Numerical calculations were performed for both the cylinder
and the sphere, and the shielding effectiveness was plotted as a
function of frequency for a shield with an outer diameter of
155 mm, a thickness of 0.1 mm, and a conductivity of
7 -1I -110 ohm m . The results are given in figures 3, 4, 5, and 6. As

expected, the features of the shielding effectiveness are
qualitatively and quantitatively similar for both the cylinder
and the sphere. The magnitude of the frequency dependence of the
shielding effectiveness is the same for both structures. Both
structures show similar resonant behavior, although not at the
same resonant frequencies. And, both structures have identical
asymptotic forms for frequencies in the resonance regime. The
almost linear increase of the shielding effectiveness at low

65



frequencies which was discovered for the sphere could not be
demonstrated analytically. However, this is believed to be a
general feature of the solutions for both the cylinder and the
sphere.
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APPENDIX A

NUMERICAL CALCULATION OF BESSEL FUNCTIONS
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To calculate the series expansion coefficients it is necessary
to evaluate Bessel and Hankel functions of both real and complex
arguments. Specifically, it is necessary to evaluate J0 (z),
J,(z), H.(z), and H,(z), and the first derivatives of these
functions, where z is in general complex. The Bessel function of
the first kind is defined by the series

J (Z) 1 k  (z]2k+n n=0,2 .... (A-1)
k=0

The Neumann function, or Bessel function of the second kind, is
defined here for positive integer indicies by

2(y + 1n-1 (zn-k-

Y (Z) = + inf]]Jn(Z) Zk1)" +nr 2 n 7 k=O k

00k k

- ( 1 ( )2k+n 1 1+...k + L+.'.+ 1 (A-2)

In the case n=O, the second term in this definition, the finite
sum from k=0 to n-1 is omitted. This term is not present in the
definition of Y0 (z). For negative indicies the Bessel functions
shall be defined by

n

J-n(z) = (-1) Jn(Z) (A-3)

n

Yn (z) = (1) Y n(Z) . (A-4)

The Hankel functions are defined in terms of the Bessel functions
by the relations

H1(z) - J (Z) + iYn(Z) , (A-5)

H2 (z) - Jn(Z) - iY (Z) (A-6)
nnn
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The Bessel functions are calculated in two different ways
depending on the magnitude of Z. The series expansions Al and A2
are used when IzI 10, and the asymptotic series expansions are
used when IzI>l0. Using the defining equation Al the real and
imaginary parts of the Bessel functions are

Re[J7n (z)] - Ek!(t~n! r k+nT- cos[(2k+n)e] , (A-7)

k=k

Im[Jn(z)] = k-10 kF~ (E2k~n sin[(2kin)e] , (A-8)

where z = re ie*These series are used to calculate the Bessel
functions J,(z) and J,(z) when IzI 10. if the series is truncated
after the 26th term, then the error is of the order of the first

term neglected, roughly 10- 16 for IzI=i0. For the Bessel function
of the second kind the real and imaginary parts are given by

Re[Y.(z)) - Z (Re[J0.(z)](y+ln(r/2)] - elm[JT.(z)] - So),

(A-9)

Im[Y.(z)] - Z (Im[J 0(z)](y+ln(r/2)) + eRe[,J.(z)] - To)P

(A-10)

Re[Y,(z)] - Z (Re[J,(z)](y+ln(r/2)) - elm[J,(z)] - .1cosO - S,}

(A-1l)

im[Y,(z)] - ( Im[J,(z)](y+ln(r/2)) + eRe[J1,(z)] + Isine - T,)

(A-12)

wiiere y - 0.577215664902 is Euler's constant; and S0 , S11 To,
and T, are given by the following series:
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S" M (144+.+2k cos(2ke) , (A-13)
-2k 2o I

k-i 2 (k!)

(-l)kr2k  1 1
T, k .22k(k!) 2 (1+1++...+ sin(2ke) , (A-14)

2 ~ k+ 1 [2(144+-+...4,) + E-', cos(2k+1)0, (A-15)
k 0 2 !(k+l)!

T, - (-1) k r2k+ l  +
T2k [2(i+++... 1) + 1 ] sin(2k+1)8. (A-16)

k=O 2(k+l)!

To calculate Y,(z) and Y,(z) these series are truncated after the
26th term.

If the magnitude of z is greater than 10, IzI>10, then the
Bessel functions are calculated by using the asymptotic expansion

Jn(Z) = [I.1/2 z-i/2(Pn(z)cos[z_(2n+l)!] - Qn(z)sin[z-(2n+l)E]) '

(A-17)

Yn(Z) M (2)1/2 Z-1/2{Pn(z)sin[z-(2n+l)[] + Qn(z)cos[z-(2n+l)!]>;

(A-18)
where

Pn(Z) I - (4n 2-1)(4n 2 _9) + (4n 2-1)(4n 2-9)(4n 2-25)(4n 2-49)
n 2!(8z)2  4!(8z)4

(A-19)

Q (Z) - (4n2 -1) - (4n 2-1)(4n 2-9)(4n 2-25) + (A-20)8z 3 "'"
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The cooresponding asymptotic expansion for the Hankel function of
the first kind is

HA(z) - (Z) + in ) (A-21)

When 4 terms are retained in equations A-19 and A-20 the error inthe calculated values of the Bessel functions J,(z), J,(z),
Y0 (z), Y1 (z), or the Hankel functions H,(z), or H,(z), is less
than 1x10- 7 for IzI>10. The accuracy improves as Izi increases.

The derivatives of the Bessel functions are calculated fromthe functions themselves by means of the following identities:

dJ0, _,z dzY dHz = -J(z) , Y = -Y(z) , -H,(z) ; (A-22)

JA(z) - Jn (z) - n Jn(Z) , n-1,2,3... ; (A-23)

Yn(z) - Yni(Z) - E Yn(z) , n=1,2,3... ; (A-24)n,- (z n

HA(z) - Hn_,(z) - L Hn(z) , n=1,2,3,... ; (A-25)

where H (z) stands for either HA(z) or HA(z), the Hankel function
of the first or second kinds.
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APPENDIX B

CALCULATION OF d,
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For the physical parameters considered in this study, and for
the frequency range of interest, the Bessel functions may be
evaluated for the complex arguments z-ya and z=yb, by using the
principle asymptotic forms for the Bessel and Hankel functions.
The asymptotic form for the Bessel function is given by

jn(z) ()1/2 Z-1/2 cos[z-(n+!)!]nn 1r2

( 11 /2 -eilxifn.) ] eY + e1i[xin4)]e+Y) ; (B-1)

and, for the Hankel function of the first kind by

Hn ()= [2Z)1/2 Z-1/2 ei[z-in4.)2]

- (2)1/2 Z-l/2 ei[x-in+ ]] e-Y ; (B-2)

where z - x+iy. A further approximation is helpful. Using
equation 21, and considering the relevant physical parameters,

that is, f a 5x101 Hz, o=10' ohm-1 m - , and b>a Z 7.5 mm, yields

I¥I = (WPo0) 1/2 > 1985,

and Arg(y) = 2 tan-'( 1 ),

which together imply

y = 2-11 2 Iyal > 10.

Therefore, the first term in equation B-1 may be neglected
compared to the second term. This yields the further
approximation

n (Z) = _ 11/2 ei[x- (n+.! R .B3

2---z e 27(B-3)
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The calculation of d. involves the calculation of a numerator
and a denominator. The denominator is given by equation 41, with
n-0. Evaluating the determinant yields

V - yH(kb) [ yJ0 (ka) (J6 (yb)H6(ya) - J6(ya)H6(yb))i +

kJ6(ka) (J0 (ya)H6lyb) - J6(yb)H0 (ya)]2 I +

-kH6(kb) [ kJ6 (ka) (J0 (ya)H0 (yb) - J0 (yb)H0 (ya))3 +

+ YJ0 (ka) (J0(yb)H6 (ya) - J6(ya)H 0 (yb))4 ] . (B-4)

The inner brackets have been numbered from 1 to 4. These inner
brackets may be evaluated by first using the identities A-21 for
the derivatives, and then substituting the required asymptotic
forms B-2 and B-3. The evaluation of bracket number 1 according
to this procedure goes as follows:

h = J6 (yb)H6 (ya) - J6 (ya)H6 (yb) (B-5)

= J1 (yb)HI(ya) - JI(ya)H1 (yb)

AC[e - i(xa -x1 ) e(y z-y I) - ei(x2-x ) e-(Y2-Yl)], (B-6)

where
Tr1 1/2 -ii

A = 1-1/ 2 Iyb" C =e , (B-7)

ya = x,+iy,, and yb - x2+iy2 .

Using the approximation: Arg(y) - n/4, which is valid for all
the physical parameters of interest, implies

X2-X y-y - 6, where 6 2- 1/2 1y1(b-a). (B-8)
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Using this result, equation B-8, the first bracket, equation B-6,

takes the following form

AC {e-i 6 e 6 - ei 6 e- 61) (B-9)

- A/2 f [cos(6)sinh(6)-sin(6)cosh(6)] +

- i[cos(6)sinh(6)+sin(6)cosh(6)] ) . (B-10)

This latter form is useful for making calculations. Evaluating
the next bracket, bracket number 2, in exactly the same way
proceeds as follows:

2= J0 (ya)H6 (yb) - J6 (yb)H0 (ya) (B-I)

J1 (yb)H0 (ya) - J0 (ya)Hl(yb)

ACi{e-i 6e6 + ei 6e- 6) (B-12)

A/ ( [cos(6)cosh(6)+sin(6)sinh(6)] +

+ i[cos(6)cosh(6)-sin(6)sinh(6)] ). (B-13)

This completes the evaluation of bracket number 2. Proceeding
similarly with bracket number 3:

)3 J0 (ya)H0 (yb) - H0 (ya)J0 (yb) (B-14)

ACtei 6e -6 - ei 6e6) (B-15)

= A/2 ( [sin(6)cosh(6)-cos(6)sinh(6)] +

+ ilcos(6)sinh(6)+sin(6)cosh(6)] ). (B-16)
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This completes the evaluation of bracket number 3. Lastly, the
evaluation of bracket number 4 goes as follows:

)4 = J0 (yb)H6(ya) - J6 (ya)H0 (yb) (B-17)

W Jl(ya)H0 (yb) - Hl(ya)J0 (yb)

S ACi[ei6 e-6 + - 6 6 ) (B-18)

= A/2 ( [cos(6)cosh(6)+sin(6)sinh)6)] +

+ i[cos(6)cosh(6)-sin(6)sinh(6)] ). (B-19)

This completes the evaluation of bracket number 4.

Having evaluated each of the inner brackets 1, 2, 3, and 4 in
the denominator, equation B-4, the following relations have been
established:

)l - )3 = x (B-20)

)2 = ]4 = V (B-21)

These equations shall define the two parameters X and V. Using
these parameters, the denominator takes the following form

V = yH0 (kb) [yJ 0 (ka)X + kJ6(ka)p] +

kH6(kb) [kJ6(ka)X - yJ0 (ka)p] (B-22)

X[y2H0(kb)J0(ka) + k2H 1 (kb)J1 (ka)] +

-ykl[H 0 (kb)J1 (ka) - H1 (kb)J0 (ka)]

or V = Xa + pp (B-23)
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where

aZ 0 yH(kb)J 0(ka) + k2H1 (kb)J 1 (ka), (B-24)

-yk[J 0 (ka)H I(kb) - H 0(kb)j I(ka)]. (B-25)

Equation B-23 is the final result for the denominator. The
parameters a and p3, given by equations B-24 and B-25, contain
products of Bessel functions of real arguments. In general, these
must be calculated by the methods described in Appendix A. The
denominator is calculated by first calculating X, Vi, a, and p,
from equations B-10, B-13, B-24, and B-25, respectively, and
then using B-23.

The next element in the calculation of d. is the numerator,
which is given by equation 40 with n-0. Evaluating the
determinant gives U.=

yk[H 0 (kb)j6(kb) - J0 (kb)H6(kb)][J0 (ya)H6 (ya) - H0 (ya)J6(ya)1

-yk[Hi 0 (kb)J 1(kb) - 0 (kb)H 1(kb)][ 0 (ya)H 1 (ya) - H 0 (ya)j 1(ya)];

which, using the definition A-5, becomes

=yk[J 1 (kj8Y 0 (kb) - 1J0(kb)Y 1 (kb)][ 0 (ya)Y 1 (ya) - Y 0 (ya)j1 (ya)].

The expressions in brackets may be simplified by using the
identity

[Jn+1 (Z)Yn(z) - Jn(Z)Y n+1 (z)] - 2/iiz

Therefore, the numerator takes the final form

ri4  = - (B-26)
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This result is exact. The coefficient d, is the quotient of the
numerator B-26 and the denominator B-23. In practice, however, it
is easier to calculate the reciprocal of d., which is given by

1 lT=ab
1 (Xa + ,) 4 . (B-27)a0 4

It is important to specify the conditions under which this
result is valid. Essentially, equation B-27 is a good
approximation as long as the principal asymptotic forms are
valid. Generally, the error in the principal asymptotic forms for
the Bessel functions decreases for increasing Izi. For example,
when Izi>125, the error is less than or equal to 3x1O-3;
when IzI>1250, the error is less than or equal to 3x1O-4 - and

when JzJ>12500, the error is less than or equal to 3x10 -5 . it
will be assumed that the results of this appendix are valid when
jz1>125. This choice for the validity criterion, while somewhat
arbitrary, is substantiated by accurate calculations of l/d.
which show that for all the cases studied in this report the
error in B-27 is less than or equal to 10- 5 when Izi=125. For the
arguments z-ya and z=yb, this condition is satisfied when
lyai>125, which implies

Iyal = wc ooa > 125. (B-28)

For the ranges of physical parameters considered in this appendix
this criterion places a constraint on the minimum frequency f
for which equation B-27 is applicable. For a iven conductivity
a, and a given radius r=a, Table B-i gives the minimum frequency
obtained by equation B-28.

Finally, the resonance condition for the TM modes will be
derived. It is known that electromagnetic resonance occurs for
certain discrete frequencies, and that this causes a reduction in
the shielding effectiveness at those frequencies. The shielding
effectiveness may be reduced by 3 or 4 orders of magnitude due to
this effect. By comparison with the resonance condition for a
pair of parallel conducting planes separated by a distance 2a, it
is logical to expect a resonance to occur when the inner diameter
of the cylino-r is an integral number of half
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Table B-i. Minimum frequency for a given cylinder radius.

a mm o 0-im -1  f Hz

63.0 IxlO' 5x104

44.4 Ixl0" 1 xl05

19.9 XiO' 5x106

14.0 Ixl0' 1 lxl0'

4.45 ixl0" 1 xl07

wavelengths, that is, 2a = n(X/2). Using the result for the
shielding effecciveness, equation B-27, it may be shown that the
resonance condition for a pair of concentric cylinders is
J.(ka) - 0. To prove this, first note that as the frequency
increases from zero, the first resonance occurs approximately
when (X/2)-2a, or f-(c/4a). For such large frequencies, that is,
f>(c/4a),

-o --- ) 1/2 (b-a) > TIrcoila) 1/24 > 4.7 , (B-29)

where it is assumed that A = (b-a)/a > 0.001, a>7.5 mm, and

o>10' ohm-m - . This frequency range will be called the resonance

regime. If terms of the form e -6 are neglected in the defining
relations B-20 and B-21, for X and p, respectively, then this
shows that =iX. Therefore, the inverse shielding effectiveness
is approximately proportional to

1),a + pl-IX(a+ip)I - XIja+iPI. (B-30)

Since lxi - e6 is an increasing function of frequency, the
resonance phenomena must arise from the a+iP term. Studying this
term in detail shows that since, for frequencies well below theinfrared, I2L Iyklk'l, 'he dominant term in a+iP is

the y2 term:
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a+i3 y2H,(kb)Jo(ka). (B-31)

Consequently, the minima in a+ip occur when J,(ka) - 0. This
establishes the resonance condition for the TM modes. Note that
since the zeros of J0 (x) and J,(x) alternate for x real, neither
a or p is ever zero, and consequently the shielding effectiveness
never goes to zero. The resonant frequencies are given by

ka Jo(n) , n - 1,2,3,... ; (B-32)
c

or fn c r j.(n) n - 1,2,3,... ; (B-33)

where jo(n) are the nth zeros of J0(x).
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APPENDIX C

CALCULATION OF D,
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The calculation of D, is similar to the calculation of d,
given in Appendix B. The magnitude of D, is essentially the
inverse shielding effectiveness in the TE case, as Id0] was in
the TM case. D, is given by equation 54. By expanding the
determinant in equation 59, the denominator is given by Y=

H0 (kb)( Y) ( J0 (ka)(Y-Y [j-(yb)H6(ya ) - J(ya)H6(yb)]1 +

k= I J6(ka) [J0 (ya)H6 (yb) - J6 (yb)H0 (ya)

k k

i-CH6(kb) t iO0 j6(ka) [J0 (ya)H0 (yb) - J0 (yb)H0 (ya)]3 +

JO(ka)(Y)3 ] [J0 (yb)H'(ya) - J0(ya)H0 (yb)]4 ]" (C-i)

The inner brackets are numbered 1,2,3, and 4 for easy reference.
Note that these brackets are equivalent to the brackets 1,2,3,
and 4 in Appendix B. Using the notation from Appendix B, the
expression for the denominator C-i may be written

Hi(kb)( Yr (J(ka)[ Y k .J6ka)

-= H0(kb) [i-,9j0(ka) f )3 a-i) )4 "(C-2)

Using the principal asymptotic forms B-2 and B-3 to evaluate the
inner brackets, exactly as was done in Appendix B, leads to

11 = -( 13 - X ' (C-3)

)2 ( )4 - V ; (C-4)

which are identical to B-20 and B-21. The details of these
calculations are given i,, Appendix B. Using these results the

82



denominator becomes Y=

Y (b) Y i(ka - k co ka
kk

SH' J (k a ) + - XJ6( ) (C-5)

which may be written

Y - XE + pr , (C-6)

where

= [P2H0(kb)J0(ka) + q2H6(kb)J6(ka)]

= [P2H 0 (kb)J0 (ka) + q2Hl(kb)Jl(ka)] , (C-7)

= Pq [Jo(ka)H6(kb) - J6(ka)H0 (kb)]

= pq [JI(ka)H 0 (kb) - J0 (ka)H1 (kb)] , (C-8)

and, where

p = and q k (C-9)

This completes the evaluation of the denominator. The evaluation
of the numerator, which is given by the determinant in equation
58, procedes exactly as in Appendix B. The numerator may be
calculated exactly with the result

2 2 pq4-1 4
-pq ) (-i) - - c . (o-c) (C-10)

The coefficient D, is the quotient of the numerator and the
denominator given by equations C-6 and C 10, respectively. In
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practice it is more convenient to work with the inverse of Do.
The inverse of D, takes the form

1 (Xa'+ up') 72ab (C-11)Do 4 '( -l

where

a' - )L -yk[(p/q)H0 (kb)J0 (ka) - (q/p)H (kb)J (ka)] (C-12)
pq0 01 1

pq _yk = -yk[J (ka)H0 (kb) - J0 (ka)Hl(kb)]. (C-13)

A further simplification may be made by noting that

(q/p) = (0__wc_ k = -[E +i a ) k (C-14)

Therefore

a' - kH0(kb)J0 (ka) + y2H1 (kb)J1 (ka) (C-15)

PI = yk[J 0 (ka)Hp(kb) - J1 (ka)H0 (kb)] (C-16)

The result for D0 , equation C-il, is identical to the result for
d,, equation B-27, except that a' and P' in the former equation
replace a and 0 in the latter equation.

As in Appendix B, it is important to specify the conditions
under which this result is valid. The equation for D,, equation
C-i, will be assumed valid for Iyai>125. Just as in Appendix B,
for a given radius r-a and a given conductivity o, this imposes a
restriction on the minimum frequency for which C-i is valid.
This leads again to the inequality 7copoa>125. and the
corresponding Table, Table B-i.

Lastly, the resonance condition for the TE modes will be
derived. As in the TM case, electromagnetic resonance will occur
for certain discrete frequencies, causing a reduction in the
shielding effectiveness at tho~e frequencie. As in the TM case,
the shielding effectiveness may be reduced by 3 or 4 orders of
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magnitude due to the resonance effect. Using the result for the
shielding effectiveness, equation C-I1, it may be shown that the
resonance condition is J,(ka) - 0. The derivation of this result
is exactly the same as for the TM case in Appendix B. Based on
the resonance condition for a pair of parallel conducting planes
it is known that the first resonance occurs approximately when
(X/2)~2a, or f-(c/4a). For large frequencies such that f>(c/4a),
it may be assumed that 6>4.7, as was done in Appendix B, equation

B-29. Therefore, in the resonance regime, terms of the form e- 6

may be neglected in the expressions for both X and V. This leads
to the result V=iX. Therefore the inverse shielding effectiveness
is proportional to

lXal+ ppr'l =Ia+i3) ila+il. (C-17)

Noting that lXI - e6 is an increasing function of frequemcy, the
resonance phenomena must arise from the a'+iP' term. Since, for
frequencies well below the infrared, 1Y2>>Iykl>>Ikzl, the
dominant term in al+iP' is the y2 term:

a'+i3' - y2H,(kb)J1 (ka). (C-18)

Consequently, the minima in a'+ip' occur when J,(ka) = 0. This
establishes the resonant condition for the TE modes. Note that
since the zeros of J0 (x) and J,(x) alternate for x real, neither
a' or ' is ever zero, and consequently the shielding
effectiveness is never zero. The resonant frequencies are given
by

ka = j,(n) , n - 1,2,3,... ; (C-19)

orn c J(n) , n - 1,23, ; (C-20)

where j,(n) are the nth zeros of J,(x).
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APPENDIX D

APPROXIMATE FORMULAS FOR SHIELDING EFFECTIVENESS
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It is extremely useful to have an approximate closed form
result for the shielding effectiveness. Such a form is easily
derived in the TM case by using the results of Appendix B. The
shielding effectiveness, given by equation B-27, is

SE- 1/2 - Ia + pp1, (D-1)4

which, for frequencies in the resonance regime, may be written

SE- 1/2 - 71ab jjaij D2
4

Now substitute the result from Appendix B,

Xi = . FyjI (ab) -1/2 e 6, (D-3)

which is valid in the resonance regime; and based on the result
B-31, make the approximation

la+ipl _ lyzi M.(kb)M0 (ka) ~ yzi 2 I)1/2( a)1/2, (D-4)

where, for x real,

M°(x) - IH.(x)l - (J2(x) + Y2(x)-") /2, (D-5)

and where it is assumed that

jJ0 (x) ~ Mo(x). (D-6)

This yields the simple formula

S- 1/2 e _ ]i26

= a )1/2 ( D-7)
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or,

SE = 4eo -26
SE a, (D-8)

where

6 -'2IJJ'(b-a) (D-9)

This shows that the shielding effectiveness is independent of the
radius of the cylinder and depends only on the thickness of the
shield. A formula for the shielding effectiveness in dB is:

SEdB - 10log( ') - log(M) + (2olio) 1/2(b-a)log(e) w 1/2). (D-10)

This formula is a good approximation in the resonance regime,
that is, f>(c/4a). However, the approximation breaks down for low
frequencies. If equation D-8 is considered as a function of w,
that is, f(w), then this function has a minimum at the frequency

2 1e - Voa (b-a)2"(D11

As w goes to zero, f(w) approaches infinity. Therefore, the
formulas D-8 or D-10 should not be applied for frequencies less
than w.. The error at this frequency is roughly 38% for the cases
studied in this report. Consequently, this formula only provides
a rough estimate in this lower frequency range.

The same formulas for the shielding effectiveness may be
derived for the TE case by using the results of Appendix C. The
shielding effectiveness, given by equation C-i, is

- i Jxa'+ pp'l (D-12)

which, for frequencies in the resonance regime, may be written
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SE-1 /2  -n rrabl I~ja-+ipjI (D-13)

Now make the approximations given by D-3, D-4, D-5, and D-6. This
again yields the formulas given in equations D-8 and D-10.
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APPENDIX E

AN ALTERNATE DEFINITION OF SHIELDING EFFECTIVENESS
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An alternate definition of shielding effectiveness may be
given in terms of the energy density of the incident and axial
fields. The most natural definition of shielding effectiveness is

uaxis

SE (2 )U a (E-1)
U inc

where U is the energy density of the fields. The factor of two is
included so that the shielding effectiveness approaches 1 as the
frequency approaches zero. The average energy density of an
electromagnetic field is defined by the relation

U = + H.B1, (E-2)

where E, D, H, and B are the real fields, and () denotes a time
average. In terms of the complex fields, and in free space, this
is equivalent to

[ * ]
U = -L. 0E*E+ 140H*H]. (E-3)

It is interesting to compare the definition E-1 to the
definition used in Section 7 for the TM and TE modes, equations
140 and 141. It will be shown that these definitions are
equivalent. The energy density of the incident planewave is

inc 1 2 1 2
U = 2 =f jiH 0. (E-4)

For the TM case the E-field at r=O is given by the n=O term in

the series expansion since Jn (0) 0  for n=±l,±2...... The 4-

component of the H-field is given by the n=±1 terms since
JA(0)-0 otherwise. The energy density of the field on the axis of

the cylinder is

(w ) axis 1 2E [I0 2 2]
(TM) U aic E2 [Idol + d_1 + d+ 1 1 j (E-5)
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Similarly, for the TE case the H-field at r-O is given by the
n-0 term in the series, and the 4-component of the E-field is
given by the n - ±1 terms. Therefore the energy density on the
cylinder axis is

(TE) Uaxis- 1  2 [1D 2+ ID_1 + D+1 I2] . (E-6)

The symmetry about the x-z plane implies that the fields are
represented by a cosine series. This implies that d_1 = -dI , and

D_ - -D1. Therefore, the shielding effectiveness for the TM and

TE modes are given by

(TM) SE = 1d0 12 , (E-7)

(TE) SE = ID0 1
2 . (E-8)

In terms of dB:

(TM) SEdB 20 log idol , (E-9)

and

(TE) SEdB = -20 log ID0 1 . (E-10)

These formula are equivalent to equations 146 and 147. Therefore
the definitions 140 and 141 given in section 7 for the shielding
effectiveness of the TM and TE modes, respectively, are
equivalent to E-1.

Next, consider a perpendicularly incident wave with an
arbitrary state of elliptical polarization. The definition E-1
lends itself naturally to such a situation. It will be shown that
the approximate formula D-7 for the shielding effectiveness is
true for any state of polarization of the incident wave. To
begin, note that the TM incident wave has rectangular components
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Ez = E, (E-11)

Hy = -Ho, (E-12)

and the TE incident wave has the components

Hz W H, (E-13)

Ey = E.. (E-14)

where E0 /H0 - rV_.77 . The electromagnetic fields for an incident
planewave having an arbitrary state of elliptical polarization
may be written

c,(TM)0 + c2{TE)0  (E-15)

where the bracket []0 stands for the totality of field

components, that is, both E and H, for either the TM or TE
incident waves. The coefficients c, and c, are complex constants
such that

Ic1 12+ Ic2 = 1. (E-16)

Using the explicit TM and TE field components given above, the
incident wave may be written in the form

Einc = E0 (clez+ czeyl (E-17)

H inc a HO(cez+ ciey). (E-18)

where ey and ez are the unit vectors in the y and z directions,

respectively. The energy density of the incident wave is computed
using equation E-3, which yields
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U1inc - CoEol12(IC1I2+ Ic212) - E1 2. (E-19)

Now energy density of the axial fields must be calculated. If the
incident wave is of the form E-15 then by the principle of
superposition the solutions for the total fields have the form

c'(TM) + c2(TE), (E-20)

where inside the cylinder, for example, (TM) stands for the
totality of field components, both E and H, given by equations
29, 30, and 31; and (TE) stands for the totality of field
components given by equations 47, 48, and 49. Using this
representation the fields on axis are given by

Ez = cEod., (E-21)

Ez = c2EODO. (E-22)

Consequently, the energy density on the axis of the cylinder is

Uaxis= 1 El 2(ic,1I2 Idol 2+ Ic12 ID 12). (E-23)

Therefore, the shielding effectiveness for a perpendicularly
incident planewave having an arbitrary state of elliptical
polarization is

SE 1c,1121do1 2+ Ica12 IDo2. (E-24)

As expected, this is a superposition of the shielding
effectiveness for the independent TM and TE modes. When the
approximate formula D-8 of Appendix D is valid, then Id1-IDO
which implies that E-24 takes the form

SE = Ido 2 - ID, 2. (E-25)
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This proves that the approximate formula D-8 is valid for any
state of polarization of the incident wave.
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APPENDIX F

APPROXIMATIONS FOR THE SPHERICAL BESSEL FUNCTIONS
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As was shown in section 7, the fields at the origin are
determined by the two coefficients p, and q,. Therefore the
calculation of the shielding effectiveness is concerned primarily
with the numerical evaluation of these two quantities. According
to the equations for p, and q,, equations 209 and 212, the main
problem is to evaluate the determinants W, and W. given by
equations 205 and 206. To do this, special care must be taken
when computing each of the four brackets []i' []2' (13' and [14"

By using the Rayleigh formulas, the spherical Bessel and
Hankel functions and the required derivatives are given by

~jjz) = sinz cosz (F-1)

1 1 i
[zJi1(z)]' = (I- !,.)sinz + L~cosz, (F-2)

h (Z) = -i(.12 - i leiz, (F-3)

[zh (z)]' = i(.12- 1) leiZ (F-4)

In general, these formulas may be used to calculate any one of
these quantities exactly. However, for the complex arguments
z-ya and z-yb, it is not practical to compute these quantities
directly from the above equations, except at low frequencies. The
reason is that for high frequencies the values of the complex
arguments z=ya and z=yb yield values of the spherical Bessel
function jl(z) which are astronomically large since they have a"

large positive exponent, and values of the Hankel function h1 (z)

which are astronomically small since they have a large negative
exponent. The magnitudes of these numbers is much greater than

the range of most computers; on the order of 1010,000 . However,
the Bessel and Hankel functions with complex arguments have been
grouped together in the brackets []i' []2' [13' and []4' in

equations 205 and 206, and since products of these functions
appear in pairs the large positive and negative exponents cancel.
By making a simple approximation the products of the Bessel and
Hankel functions may be calculated quite easily and accurately.
First note that for a good conductor, and for frequencies such
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that (o/ c0)<1, the propagation constant inside the conducting
medium, y, is given by

2- io'(O-ioe) - + - ia-), (F-5)

which implies the approximation

1 (!O)1/2 e 4 (o)I.O) 1/2 e4. (F-6)

Considering the following ranges of physical parameters:

a > 7.5 mm, f > 5x10 4 Hz, and a > 10' ohm- m - , implies that the
arguments of the spherical Bessel functions satisfy the
following inequalities: ka > 0.139 and Izi - Iyal > 14.89.
Therefore, writing z in the form z - &+i&, these conditions

imply > 10.0. Consequently, if terms of the form e iz= e iEe
-

are neglected compared to the terms of the form eiZ ee
then the formulas F-I and F-2 may be approximated by the formulas

j1 z) -j +)e 1 , (F-7)

[zj1 (z)' - -![ .+ A - l]ei . (F-8)

These approximations shall be used to evaluate the brackets in
equations 205 and 206. Proceeding with the evaluation of bracket
number 1, let z,.ya and z,=yb, then using F-2, F-4, F-7, and F-8
yields

r1  j £j(z,)rh(z2) - rj(z,)rh(zl) (F-9)

Z- 2 _ z;2+ -1+ (,zz,)- 2

2(zIz 2 ) I isin(z,-zl) +

[z I  41l zz 2z z 2
] icos(z2 -z1 ). (F-l0)
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Similarly, simplifying bracket number two yields

[12 - h1 (zi)r(z) - Jl(z,)rh(Z2) (F-i1)

= -[z 2  (z 1z) - - (z2z) - ] isin(z,-zi)

- 1 -2- --2] csz
-zl+ z;12 _ z;1 z 2 ] icos(z,-z1 ). (F-12)

Bracket number three is given by

[13 - rh(zl)jl(zl) - rj(z,)h 1 (Z,) (F-13)

= -[z 2- (zz ) 1- (z2z) - ] isin(z,-z,) +

+ [z2 - zi z'z+ z 1 z;2 ] icos(za-zi). (F-14)

And, bracket number 4 is given by

[]4 = jl(z,)h,(z,) - hl(z,)j1 (z2 ) (F-IS)

= [(zza)- 1 + (zz 2 )
- 2] isin(z,-z,) +

- [z-2z- zi1z 2] icos(z 2 -z 1 ). (F-6)

In general, these approximations are very good for lyal>14.14.
These formulas for each of the four brackets are used in the
calculation of the shielding effectiveness of a spherical
conducting shell at high frequencies. It is not necessary to
separate the real and imaginary parts of these equations since
all numerical work is performed on a computer which supports
complex arithmetic.

In addition to the approximations F-7 and F-8, for the
spherical Bessel functions, another set of approximations is
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required when the magnitudes of the arguments is very small,
that is, lzl(<<. Approximations of this type are needed to
calculate the shielding effectiveness for very low frequencies
where ka«<1. The problem at very low frequencies is not with the
evaluation of the bracketed terms, but with the coefficients of
these brackets in equations 205 and 206. These coefficients are
products of spherical Bessel functions having the real arguments
x=ka and x-kb. If x<<l, problems arise if jl(x) and [xjl(x) ] ' are

computed by using equations F-i and F-2 on a calculator or
computer which has an accuracy of 12 significant figures. For

example, if x-10 - 6, then on a machine with an accuracy of 12
significant figures a sim le algorithm based on F-i and F-2
yields j1(x)=0 and (xj1 (x)]'=0. This situation is not acceptable
since it may lead to erroneous results for the shielding
effectiveness. Therefore, for IzI<<i, the Bessel and Hankel
functions shall be approximated by the relations

1j1(z) - z (F-17)

[zj,(z) = (F-8)
1 i1 1

h,(z) - 1z - i[ , .1), (F-19)

[zh,(z)]' = + i1 ). (F-20)

These approximations may be obtained from the defining relations
F-i, F-2, F-3, and F-4 by straightforward series expansions of
the trigonometric and exponential functions. These equations are

utilized in numerical computations when IzI<10 - 3 .

The resonance conditions shall now be derived for the electric
and magnetic fields. By analogy with the interference effects in
a Fabry-Perot interferometer it is expected that the fields
inside the spherical cavity should exibit resonances for certain
discrete frequencies. Consider the resonances in a system of two
parallel planes seperated by a distance d. Resonances will occur
when the separation of the planes is equal to an integral number
of half-wavelengths, that is, n(X/2)-d, or f-(c/2d)n. Therefore,
it is logical to expect that the first resonance for the sphere
will occur near the frequency f=(c/4a), or equivalently
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ka=(n/2)-l. For frequencies such that fa(c/4a), the magnitude of
the arguments z=ya satisfies the inequality

Iyal = (col0 ]1 /2o Z TracolJ)1/2. (F-21)

For the parameters o=10 7ohm- m-1 and a=7.5 mm, this inequality
yields IyaI>6664. Therefore, in the resonance regime, the
approximations F-10, F-12, F-14, F-16 will certainly hold for the
brackets []i' []2' []3' and [14"

The resonances for the magnetic field shall occur when the
magnitude of the coefficient p, is a maximum, since at the center
of the sphere IH/H 0 1=p,l. This implies that the reciprocal of
1P, Iwill be a minimum. To first order,

W, = jl(ka)hl(kb)[]l - jl(ka)hl(kb) isin[y(b-a)], (F-22)

according to F-10, F-12, F-14, and F-16. Therefore the resonances
for the magnetic field will occur when the quantity

I1 ,I = lyal(kb)lwl - lyal(kb) iJl(ka)llhl(kb)llsin[y(b-a)]I
(F-23)

is a minimum. Clearly, this occurs when jl(ka)=0. This is the

resonance condition for the magnetic field. Note that this is
also the resonance condition for the magnetic shielding
effectiveness SEm , since SEm= IPi2.

The resonances for the electric field shall occur when the
magnitude of the coefficient q, is a maximum. This implies that
the reciprocal of 1q, will be a minimum. To first order,

w, = rj(ka)F h(kb)4 [14

- rj(ka)rh(kb)F.[(ya)(yb)]-1 isin[y(b-a)], (F-24)
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according to F-10, F-12, F-14, and F-16. Therefore the resonances
for the electric field will occur when the quantity

q,JV 1 - Ik/yl(ka)(kb)IWl

y/krlj(ka)llrh(kb)llsin[y(b-a)]I (F-25)

is a minimum. Clearly, this occurs when rj(ka)=O, that is,

[PJ(P)] ka-0. This is the resonance condition for the electric
field. This is also the resonance condition for the electric
shielding effectiveness SEe, since SEe- jq 1 2.

For the electromagnetic shielding effectiveness, which is
defined in terms of the energy density of the fields, the
resonances will occur when either of the previously derived
conditions are satified separately , since SE = SEm+ SEe.

Therefcre, the resonance conditions are

jl(ka) - 0, (F-26)

[PJ_ (P ) ] = k a - 0. (F-27)

The first few zeros of F-27 are given in Table F-i.

Lastly, an approximate formula for the SE of a sphere shall be
derived which is identical to the approximate formula for the
cylinder. This approximate formula shall be derived for
frequencies in the resonance regime. For the magnetic shielding
effectiveness, start with equation F-23:

jp,[- I  - Iyal(kb)IWI - Iyal(kb)lJl(ka)llhl(kb)llsin[y(b-a)]I
(F-28)

Assuming that Iy(b-a)1>14.14, the sine term may be approximated
by a single exponential,
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n Zn

1 2.743707 269992

2 6.116764 264462

3 9.316615 628566

4 12.485937 368200

5 15.643866 106348

6 18.796253 353454

Table F-i. Zeros of [zjl(z)]' for z real, z>0.

Isin[yb-a1JI -2 e . (F-29)

The magnitude of the spherical Bessel and Hankel functions may be
roughly approximated by their modulus [[193, page 439, equations
10.1.28 and 10.1.29)

ji(x) - + ,

h1 (x) 1[i + .

Assuming ka>>l, then to first order jl(ka)=(l/ka) and

h1 (ka)=(1/ka), which imply that equation F-28 takes the form

IpjI1  j y/kj . e y21/2 (b-a). (F-30)

This yields the desired formula for the shielding effectiveness
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SEm  ipt 12 = !o 2e-1 o1I(b-a) (F-31)

Next, the same formula shall be derived for the electric
shielding effectiveness. Start with equation F-25:

qI I-1 - iY/ki rj(ka)jIIrh(kb)llsin[y(b-a)1l (F-32)

Assuming that Iy(b-a)1>14.14, the sine term may again be
approximated by a single exponential as in equation F-29.
Consider the terms r.(ka) and rh(kb). Using a standard Bessel

function identity, one may write

[pil(p)] = pji(p) + j1 (p) = pj0(p) - jl(p). (F-33)

[phl(p)]' = phj(p) + hI(p) - pho(p) - h1 (p). (F-34)

Then, roughly approximating J0 (p) and j1 (p) by their modulus, to

first order, 1/p, since ka>>l, this shows that

[pl(p) I - 1 - W 1, (F-35)
p

[ph1 (p)j, - I - - - 1. (F-36)

Employing these rough order of magnitude approximations one
obtains

Iq I-1 - Iy/k .1 e 1y12- 1/2 (b-a), (F-37)

which again yields the formula
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SEe 1 1q, 12  4o e-2ao(b-a)" (F-38)

Therefore, the final formula for the electromagnetic shielding
effectiveness in the resonance regime is

SE - SEm+ SEe 8W 0 e-2-(b-a) (F-39)
M e 0

This shows that the shielding effectiveness at the center of the
sphere is independent of the radius of the sphere and depends
only on the thickness and conductivity of the shield. In terms of
dB, this formula may be written

SE (dB) = 1OfLog(o/8co) - Log(w) + '2-o(b-a)Log(e) /2). (F-40)

In general, the formulas F-39 and F-40 are good approximations
when the conditions Iyal>14.14 and Iy(b-a)I>14.14 are both
satisfied simultaneously. This implies that Iyal>14.14, or

1/2
equivalently (wopo0) a >14.14. These formulas break down for low
frequencies and cannot be used for frequencies less than

2 1o = - 105
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